scholarly journals Short Trains of Theta Frequency Stimulation Enhance CA1 Pyramidal Neuron Excitability in the Absence of Synaptic Potentiation

2009 ◽  
Vol 29 (36) ◽  
pp. 11203-11214 ◽  
Author(s):  
A. E. Fink ◽  
T. J. O'Dell
2008 ◽  
Vol 212 (2) ◽  
pp. 415-421 ◽  
Author(s):  
Yuan Fan ◽  
Ping Deng ◽  
Yu-Chi Wang ◽  
Hui-Chen Lu ◽  
Zao C. Xu ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Paola Vitale ◽  
Ana Rita Salgueiro-Pereira ◽  
Carmen Alina Lupascu ◽  
Michael Willem ◽  
Rosanna Migliore ◽  
...  

Age-dependent accumulation of amyloid-β, provoking increasing brain amyloidopathy, triggers abnormal patterns of neuron activity and circuit synchronization in Alzheimer’s disease (AD) as observed in human AD patients and AD mouse models. Recent studies on AD mouse models, mimicking this age-dependent amyloidopathy, identified alterations in CA1 neuron excitability. However, these models generally also overexpress mutated amyloid precursor protein (APP) and presenilin 1 (PS1) and there is a lack of a clear correlation of neuronal excitability alterations with progressive amyloidopathy. The active development of computational models of AD points out the need of collecting such experimental data to build a reliable disease model exhibiting AD-like disease progression. We therefore used the feature extraction tool of the Human Brain Project (HBP) Brain Simulation Platform to systematically analyze the excitability profile of CA1 pyramidal neuron in the APPPS1 mouse model. We identified specific features of neuron excitability that best correlate either with over-expression of mutated APP and PS1 or increasing Aβ amyloidopathy. Notably, we report strong alterations in membrane time constant and action potential width and weak alterations in firing behavior. Also, using a CA1 pyramidal neuron model, we evidence amyloidopathy-dependent alterations in Ih. Finally, cluster analysis of these recordings showed that we could reliably assign a trace to its correct group, opening the door to a more refined, less variable analysis of AD-affected neurons. This inter-disciplinary analysis, bringing together experimentalists and modelers, helps to further unravel the neuronal mechanisms most affected by AD and to build a biologically plausible computational model of the AD brain.


2010 ◽  
Vol 30 (18) ◽  
pp. 6434-6442 ◽  
Author(s):  
G. A. Ascoli ◽  
S. Gasparini ◽  
V. Medinilla ◽  
M. Migliore

1996 ◽  
Vol 75 (2) ◽  
pp. 877-884 ◽  
Author(s):  
P. T. Huerta ◽  
J. E. Lisman

1. The induction of long-term weakening of synaptic transmission in rat hippocampal slices was examined in CA1 synapses during cholinergic modulation. 2. Bath application of the cholinergic agonist carbachol (50 microM) activated an oscillation of the local field potential in the theta-frequency range (5-12 Hz), termed theta. It was previously shown that a stimulation train of 40 single shocks (at 0.1 Hz) to the Schaffer collateral-commisural afferents, each synchronized with positive peaks of theta, caused homosynaptic long-term enhancement in CA1. Furthermore, long-term depression (LTD) was sporadically observed when the stimulation train was given at negative troughs of theta. Here we have sought to determine stable conditions for LTD induction during theta. 3. Synaptic weakening was reliably obtained, by giving 40 shocks (at 0.1 Hz) at theta-troughs, only in pathways that had been previously potentiated. This decrement, termed theta-LTD, was synapse specific because it did not occur in an independent pathway not stimulated during theta. The interval between the initial potentiating tetanus and theta-LTD induction could be as long as 90 min. 4. theta-LTD could be saturated; after consecutive episodes of theta-LTD induction, no significant further depression was obtained. Moreover, theta-LTD could be reversed by tetanic stimulation. 5. theta-LTD could prevent the induction of LTD by 600-900 pulses at 1 Hz. This suggests that the two protocols may share common mechanisms at the synaptic level. 6. We conclude that single presynaptic spikes that occur at low frequency and are properly timed to the troughs of theta may be a relevant mechanism for decreasing the strength of potentiated synapses.


2006 ◽  
Vol 1125 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Toshiaki Omori ◽  
Toru Aonishi ◽  
Hiroyoshi Miyakawa ◽  
Masashi Inoue ◽  
Masato Okada

Sign in / Sign up

Export Citation Format

Share Document