scholarly journals Differential paired pulse depression of non-NMDA and NMDA currents in pyramidal cells of the rat frontal cortex

1995 ◽  
Vol 15 (12) ◽  
pp. 8268-8280 ◽  
Author(s):  
Y Kang
1997 ◽  
Vol 77 (4) ◽  
pp. 1939-1949 ◽  
Author(s):  
Mohamed Ouardouz ◽  
Jean-Claude Lacaille

Ouardouz, Mohamed and Jean-Claude Lacaille. Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats. J. Neurophysiol. 77: 1939–1949, 1997. Whole cell recordings were used in hippocampal slices of young rats to examine unitary inhibitory postsynaptic currents (uIPSCs) evoked in CA1 pyramidal cells at room temperature. Loose cell-attached stimulation was applied to activate single interneurons of different subtypes located in stratum oriens (OR), near stratum pyramidale (PYR), and at the border of stratum radiatum and lacunosum-moleculare (LM). uIPSCs evoked by stimulation of PYR and OR interneurons had similar onset latency, rise time, peak amplitude, and decay. In contrast, uIPSCs elicited by activation of LM interneurons were significantly smaller in amplitude and had a slower time course. The mean reversal potential of uIPSCs was −53.1 ± 2.1 (SE) mV during recordings with intracellular solution containing potassium gluconate. With the use of recording solution containing the potassium channel blocker cesium, the reversal potential of uIPSCs was not significantly different (−58.5 ± 2.6 mV), suggesting that these synaptic currents were not mediated by potassium conductances. Bath application of the γ-aminobutyric acid-A (GABAA) receptor antagonist bicuculline (25 μM) reversibly blocked uIPSCs evoked by stimulation of all interneuron subtypes. In bicuculline, the mean peak amplitude of uIPSCs recorded with potassium gluconate was reduced to 3.5 ± 4.4% of control ( n = 7). Similarly, with cesium methanesulfonate, the mean amplitude in bicuculline was 2.9 ± 3.1% of control ( n = 13). Application of the GABAB receptor antagonist CGP 55845A (5 μM) resulted in a significant and reversible increase in the mean amplitude of uIPSCs recorded with cesium-containing intracellular solution. Thus uIPSCs from all cell types appeared under tonic presynaptic inhibition by GABAB receptors. Paired stimulation of individual interneurons at 100- to 200-ms intervals did not result in paired pulse depression of uIPSCs. For individual responses, a significant negative correlation was observed between the amplitude of the first and second uIPSCs. A significant paired pulse facilitation (154.0 ± 8.0%) was observed when the first uIPSC was smaller than the mean of all first uIPSCs. A small, but not significant, paired pulse depression (90.8 ± 4.0%) was found when the first uIPSC was larger than the mean of all first uIPSCs. Our results indicate that these different subtypes of hippocampal interneurons generate Cl−-mediated GABAA uIPSCs. uIPSCs originating from different types of interneurons may have heterogeneous properties and may be subject to tonic presynaptic inhibition via heterosynaptic GABAB receptors. These results suggest a specialization of function for inhibitory interneurons and point to complex presynaptic modulation of interneuron function.


2015 ◽  
Vol 113 (7) ◽  
pp. 2400-2407 ◽  
Author(s):  
Iraklis Petrof ◽  
Angela N. Viaene ◽  
S. Murray Sherman

The primary somatosensory (S1) and primary motor (M1) cortices are reciprocally connected, and their interaction has long been hypothesized to contribute to coordinated motor output. Very little is known, however, about the nature and synaptic properties of the S1 input to M1. Here we wanted to take advantage of a previously developed sensorimotor slice preparation that preserves much of the S1-to-M1 connectivity (Rocco MM, Brumberg JC. J Neurosci Methods 162: 139–147, 2007), as well as available optogenetic methodologies, in order to investigate the synaptic profile of this projection. Our data show that S1 input to pyramidal cells of M1 is highly homogeneous, possesses many features of a “driver” pathway, such as paired-pulse depression and lack of metabotropic glutamate receptor activation, and is mediated through axons that terminate in both small and large synaptic boutons. Our data suggest that S1 provides M1 with afferents that possess synaptic and anatomical characteristics ideal for the delivery of strong inputs that can “drive” postsynaptic M1 cells, thereby potentially affecting their output.


2019 ◽  
Vol 122 (4) ◽  
pp. 1461-1472 ◽  
Author(s):  
Yoshifumi Ueta ◽  
Jaerin Sohn ◽  
Fransiscus Adrian Agahari ◽  
Sanghun Im ◽  
Yasuharu Hirai ◽  
...  

In the neocortex, both layer 2/3 and layer 5 contain corticocortical pyramidal cells projecting to other cortices. We previously found that among L5 pyramidal cells of the secondary motor cortex (M2), not only intratelencephalic projection cells but also pyramidal tract cells innervate ipsilateral cortices and that the two subtypes are different in corticocortical projection diversity and axonal laminar distributions. Layer 2/3 houses intratelencephalically projecting pyramidal cells that also innervate multiple ipsilateral and contralateral cortices. However, it remained unclear whether layer 2/3 pyramidal cells can be divided into projection subtypes each with distinct innervation to specific targets. In the present study we show that layer 2 pyramidal cells are organized into subcircuits on the basis of corticocortical projection targets. Layer 2 corticocortical cells of the same projection subtype were monosynaptically connected. Between the contralaterally and ipsilaterally projecting corticocortical cells, the monosynaptic connection was more common from the former to the latter. We also found that ipsilaterally and contralaterally projecting corticocortical cell subtypes differed in their morphological and physiological characteristics. Our results suggest that layer 2 transfers separate outputs from M2 to individual cortices and that its subcircuits are hierarchically organized to form the discrete corticocortical outputs. NEW & NOTEWORTHY Pyramidal cell subtypes and their dependent subcircuits are well characterized in cortical layer 5, but much less is understood for layer 2/3. We demonstrate that in layer 2 of the rat secondary motor cortex, ipsilaterally and contralaterally projecting corticocortical cells are largely segregated. These layer 2 cell subtypes differ in dendrite morphological and intrinsic electrophysiological properties, and form subtype-dependent connections. Our results suggest that layer 2 pyramidal cells form distinct subcircuits to provide discrete corticocortical outputs.


1993 ◽  
Vol 70 (6) ◽  
pp. 2354-2369 ◽  
Author(s):  
A. M. Thomson ◽  
J. Deuchars ◽  
D. C. West

1. In slices of rat sensorimotor cortex, dual intracellular recordings were obtained from 1,952 pairs of deep layer pyramidal neurons. Where action potentials in one neurone elicited excitatory postsynaptic potentials (EPSPs, n = 56) in the other, responses to different presynaptic firing rates and patterns and at different postsynaptic membrane potentials were recorded and on some occasions both neurons were filled with biocytin. 2. Slices were fixed, sectioned again at 60 microns, and incubated with Avidin horseradish peroxidase (HRP), which was then visualized using the 3,3'-diaminobenzidine tetrahydrochloride (DAB) method. All neurones reported here that were identified histologically were pyramidal cells with their somata in the deep layers (V and VI). 3. One in 70 of the tests performed revealed a synaptic connection, 25 of which were studied in detail. Mean EPSP amplitude was 1.67 +/- 1.66 (SD) mV, with some single sweep events as large as 9 mV. For some of the smaller EPSPs the amplitude distributions contained a clear peak around 0 mV, the coefficient of variation (CV) was large, and paired pulse facilitation was apparent. EPSPs with large average amplitudes displayed no apparent failures of transmission, EPSP amplitudes were fairly evenly distributed around the mean, CVs were small, and paired pulse depression was apparent in 2.5 mM extracellular Ca2+. When single sweeps were selected according to the size of the first EPSP, large second EPSPs were found to follow small first EPSPs and small second EPSPs to follow large first EPSPs. Paired pulse effects appeared, in the majority of tests, to be due to a change in presynaptic release probability. 4. Two EPSPs were recorded in three different extracellular Ca2+ concentrations. In 1 mM Ca2+, the first EPSP of a short interval pair was small and paired pulse facilitation was apparent. In 5 mM Ca2+, first EPSPs were between 2.5 and 4 times larger than in 1 mM Ca2+ and paired pulse depression was apparent. In all Ca2+ concentrations however, averaged third and fourth EPSPs of brief bursts were of similar amplitudes and smaller than second EPSPs. If presynaptic inhibition does contribute to paired pulse effects here, it is not overcome by a combination of raised extracellular Ca2+ and repetitive presynaptic firing. 5. These EPSPs displayed a wide range of time courses. The mean 10-90% rise time was 2.49 +/- 1.08 ms, the mean width at half amplitude was 15.39 +/- 5.42 ms (n = 22), and the mean EPSP latency was 1.59 +/- 0.68 ms (n = 18). (ABSTRACT TRUNCATED AT 400 WORDS)


2007 ◽  
Vol 97 (6) ◽  
pp. 3926-3936 ◽  
Author(s):  
Ann E. Fink ◽  
Joshua Sariñana ◽  
Erin E. Gray ◽  
Thomas J. O'Dell

The existence of recurrent excitatory synapses between pyramidal cells in the hippocampal CA1 region has been known for some time yet little is known about activity-dependent forms of plasticity at these synapses. Here we demonstrate that under certain experimental conditions, Schaffer collateral/commissural fiber stimulation can elicit robust polysynaptic excitatory postsynaptic potentials due to recurrent synaptic inputs onto CA1 pyramidal cells. In contrast to CA3 pyramidal cell inputs, recurrent synapses onto CA1 pyramidal cells exhibited robust paired-pulse depression and a sustained, but rapidly reversible, depression in response to low-frequency trains of Schaffer collateral fiber stimulation. Blocking GABAB receptors abolished paired-pulse depression but had little effect on low-frequency stimulation (LFS)-induced depression. Instead, LFS-induced depression was significantly attenuated by an inhibitor of A1 type adenosine receptors. Blocking the postsynaptic effects of GABAB and A1 receptor activation on CA1 pyramidal cell excitability with an inhibitor of G-protein-activated inwardly rectifying potassium channels had no effect on either paired-pulse depression or LFS-induced depression. Thus activation of presynaptic GABAB and adenosine receptors appears to have an important role in activity-dependent depression at recurrent synapses. Together, our results indicate that CA3-CA1 and CA1-CA1 synapses exhibit strikingly different forms of short-term synaptic plasticity and suggest that activity-dependent changes in recurrent synaptic transmission can transform the CA1 region from a sparsely connected recurrent network into a predominantly feedforward circuit.


1995 ◽  
Vol 74 (5) ◽  
pp. 2126-2137 ◽  
Author(s):  
R. Khazipov ◽  
P. Congar ◽  
Y. Ben-Ari

1. Whole cell patch-clamp recordings were employed to characterize monosynaptic inhibitory postsynaptic currents (IPSCs) in morphologically and electrophysiologically identified interneurons located in the stratum lacunosum moleculare, or near the border of the stratum radiatum (LM interneurons), in the CA1 region of hippocampal slices taken from 3- to 4-wk-old rats. Monosynaptic IPSCs, evoked in the presence of glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphopentanoate (APV; 50 microM) were biphasic. The gamma-aminobutyric acid-A (GABAA) receptor antagonist, bicuculline (20 microM), blocked the fast IPSC, and the slow IPSC was blocked by the GABAB receptor antagonist CGP35348 (500 microM). 2. Monosynaptic IPSCs were evoked by electrical stimulation in several distant regions including the stratum radiatum, the stratum oriens, the stratum lacunosum-moleculare, and the molecular layer of dentate gyrus, suggesting an extensive network of inhibitory interneurons in the hippocampus. In paired recordings of CA1 interneurons and pyramidal cells, IPSCs were evoked by electrical stimulation of most of these distal regions with the exception of the molecular layer of dentate gyrus, which evoked an IPSC only in LM interneurons. 3. Frequent (> 0.1 Hz) stimulation depressed the evoked IPSCs. With a paired-pulse protocol, the second IPSC was depressed and the maximal depression (40-50%) was observed with an interstimulus interval of 100-200 ms. 4. The GABAB receptor agonist baclofen (1 microM) reduced the amplitude of evoked IPSCs and the paired-pulse depression of the second IPSC. The GABAB receptor antagonist CGP35348 (0.5-1 mM) had no significant effect on the amplitude of isolated IPSCs. However, CGP35348 reduced but did not fully block paired-pulse depression, suggesting that this depression is partly due to the activation of presynaptic GABAB receptors. 5. The paired-pulse depression depended on the level of transmitter release. Potentiation of synaptic release of GABA, by increasing the extracellular Ca2+ concentration to 4 mM and reducing the extracellular Mg2+ concentration to 0.1 mM, enhanced the depression. Reduction of transmitter release by increasing extracellular Mg2+ concentration to 7 mM diminished the paired-pulse depression of IPSCs. After potentiation of transmitter release, CGP35348 was less efficient in reducing the paired-pulse depression, suggesting that enhancement of depression by high-calcium/low-magnesium medium was preferentially due to the potentiation of a GABAB-independent component. 6. In summary, monosynaptic IPSCs recorded in LM interneurons show similar features to those recorded in pyramidal cells. The strong correlation between the level of transmitter release and the degree of paired-pulse depression may have important physiological consequences, because in synapses with a high level of activity and a high level of GABA release, inhibition is powerful, but depression can develop more readily.


1989 ◽  
Vol 61 (2) ◽  
pp. 417-426 ◽  
Author(s):  
J. Kapur ◽  
J. L. Stringer ◽  
E. W. Lothman

1. A method was developed to quantify paired-pulse depression of population spikes in the CA1 region of the hippocampus of urethane-anesthetized rats with paired stimuli to the contralateral CA3 region at various states of excitability of pyramidal cells. This method was applied to measure changes following recurrent seizures, a single seizure, or long-term potentiation (LTP). 2. In naive animals paired-pulse depression was highly variable at low stimulus intensities, but constant above a certain "threshold" stimulus intensity. The potency of paired-pulse depression also depended on the time between paired stimuli, being maximal at an interpulse interval of 20 ms. The general relationships of paired-pulse depression to stimulus intensity and to interpulse interval were unaltered after LTP, after a single seizure, and after recurrent seizures, but there were quantitative changes in the last two cases. 3. A variety of pharmacologic agents known to interact with GABAergic inhibition were studied for their effect on paired-pulse depression. These agents affected earlier phases of paired-pulse depression (interpulse intervals less than or equal to 100 ms). The GABA agonist muscimol and the benzodiazepine diazepam enhanced paired-pulse depression whereas the GABA antagonist bicuculline decreased it. 4. Repeated seizures elicited by trains (50-Hz, 10-s durations every 5 min) of electrical stimuli to the hippocampus were associated with progressive lengthening of afterdischarges. 5. Recurrent seizures caused a statistically significant reduction in the potency of earlier phases of paired-pulse depression. There was an increase in the potency of later phases of paired-pulse depression after recurrent seizures, but this was not statistically significant. These changes were present for at least 2 h after the last seizure. 6. An antidromic-orthdromic paired-pulse protocol was used to exclude slow conductance changes as the cause of paired-pulse depression. Paired-pulse depression measured with this method was also decreased by recurrent seizures. 7. A single seizure caused a small reduction in paired-pulse depression that dissipated in less than an hour. 8. A single seizure caused LTP of stimulus intensity versus population spike curves whereas recurrent seizures attenuated or even reversed the potentiation, leading to a rightward shift of the curves relative to control curves. When LTP was produced by a less intense stimulus train (50-Hz, 400-ms duration), there were no associated seizures nor was there any change in paired-pulse depression.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document