rat frontal cortex
Recently Published Documents


TOTAL DOCUMENTS

398
(FIVE YEARS 11)

H-INDEX

54
(FIVE YEARS 1)

2021 ◽  
pp. 113203
Author(s):  
Els F. Halff ◽  
Marie-Caroline Cotel ◽  
Sridhar Natesan ◽  
Richard McQuade ◽  
Chris J. Ottley ◽  
...  

2020 ◽  
Vol 72 (6) ◽  
pp. 1593-1603
Author(s):  
Monika Herian ◽  
Adam Wojtas ◽  
Małgorzata Katarzyna Sobocińska ◽  
Mateusz Skawski ◽  
Alejandro González-Marín ◽  
...  

Abstract Background 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a potent serotonin (5-HT) receptor agonist with hallucinogenic properties. The aim of our research was to examine the role of the 5-HT2A, 5-HT2C and 5-HT1A serotonin receptor subtypes in 25I-NBOMe hallucinogenic activity and its effect on dopamine (DA), 5-HT and glutamate release in the rat frontal cortex. Methods Hallucinogenic activity was investigated using the wet dog shake (WDS) test. The release of DA, 5-HT and glutamate in the rat frontal cortex was studied using a microdialysis in freely moving rats. Neurotransmitter levels were analyzed by HPLC with electrochemical detection. The selective antagonists of the 5-HT2A, 5-HT2C and 5-HT1A serotonin receptor subtypes: M100907, SB242084 and WAY100635, respectively were applied through a microdialysis probe. Results The WDS response to 25I-NBOMe (1 and 3 mg/kg) was significantly reduced by local administration of M100907 and SB242084 (100 nM). The 25I-NBOMe-induced increase in glutamate, DA and 5-HT release was inhibited by M100907 and SB242084. WAY100635 had no effect on 25I-NBOMe-induced WDS and glutamate release, while it decreased DA and 5-HT release from cortical neuronal terminals. Conclusion The obtained results suggest that 5-HT2A and 5-HT2C receptors play a role in 25I-NBOMe-induced hallucinogenic activity and in glutamate, DA and 5-HT release in the rat frontal cortex as their respective antagonists attenuated the effect of this hallucinogen. The disinhibition of GABA cells by the 5-HT1A receptor antagonist seems to underlie the mechanism of decreased DA and 5-HT release from neuronal terminals in the frontal cortex.


2020 ◽  
Vol 140 ◽  
pp. 104838 ◽  
Author(s):  
Vergine Chavushyan ◽  
Senik Matinyan ◽  
Margarita Danielyan ◽  
Michail Aghajanov ◽  
Konstantin Yenkoyan

Author(s):  
Se Hyun Kim ◽  
Hyun Sook Yu ◽  
Soyoung Park ◽  
Hong Geun Park ◽  
Yong Min Ahn ◽  
...  

Abstract Background It is uncertain how electroconvulsive therapy (ECT)-induced generalized seizures exert their potent therapeutic effects on various neuropsychiatric disorders. Adenosine monophosphate-activated protein kinase (AMPK) plays a major role in maintaining metabolic homeostasis, and activates autophagic processes via unc-51-like kinase (ULK1). Evidence supports the involvement of autophagy system in the action mechanisms of antidepressants and antipsychotics. The effect of ECT on autophagy-related signaling requires further clarification. Methods The effect of electroconvulsive seizure (ECS) on autophagy, and its association with the AMPK signaling pathway, were investigated in the rat frontal cortex. ECS was provided once per day for 10 days (E10X), and compound C or 3-methyadenine was administered through an intracerebroventricular (i.c.v.) cannula. Molecular changes were analyzed with immunoblot, immunohistochemistry, and transmission electron microscopy (TEM) analyses. Results E10X increased p-Thr172-AMPKα immunoreactivity in rat frontal cortex neurons. E10X increased phosphorylation of upstream effectors of AMPK, such as LKB1, CaMKK, and TAK1, and of its substrates, ACC, HMGR, and GABABR2. E10X also increased p-Ser317-ULK1 immunoreactivity. At the same time, LC3-II and ATG5–ATG12 conjugate immunoreactivity increased, indicating activation of autophagy. An i.c.v injection of the AMPK inhibitor compound C attenuated the ECS-induced increase in ULK1 phosphorylation, as well as the protein levels of LC3-II and Atg5–Atg12 conjugate. TEM clearly showed an increased number of autophagosomes in the rat frontal cortex after E10X, which was reduced by i.c.v treatment with the autophagy inhibitor 3-methyadenine and compound C. Conclusions Repeated ECS treatments activated in vivo autophagy in the rat frontal cortex through the AMPK signaling pathway.


2019 ◽  
Vol 122 (4) ◽  
pp. 1461-1472 ◽  
Author(s):  
Yoshifumi Ueta ◽  
Jaerin Sohn ◽  
Fransiscus Adrian Agahari ◽  
Sanghun Im ◽  
Yasuharu Hirai ◽  
...  

In the neocortex, both layer 2/3 and layer 5 contain corticocortical pyramidal cells projecting to other cortices. We previously found that among L5 pyramidal cells of the secondary motor cortex (M2), not only intratelencephalic projection cells but also pyramidal tract cells innervate ipsilateral cortices and that the two subtypes are different in corticocortical projection diversity and axonal laminar distributions. Layer 2/3 houses intratelencephalically projecting pyramidal cells that also innervate multiple ipsilateral and contralateral cortices. However, it remained unclear whether layer 2/3 pyramidal cells can be divided into projection subtypes each with distinct innervation to specific targets. In the present study we show that layer 2 pyramidal cells are organized into subcircuits on the basis of corticocortical projection targets. Layer 2 corticocortical cells of the same projection subtype were monosynaptically connected. Between the contralaterally and ipsilaterally projecting corticocortical cells, the monosynaptic connection was more common from the former to the latter. We also found that ipsilaterally and contralaterally projecting corticocortical cell subtypes differed in their morphological and physiological characteristics. Our results suggest that layer 2 transfers separate outputs from M2 to individual cortices and that its subcircuits are hierarchically organized to form the discrete corticocortical outputs. NEW & NOTEWORTHY Pyramidal cell subtypes and their dependent subcircuits are well characterized in cortical layer 5, but much less is understood for layer 2/3. We demonstrate that in layer 2 of the rat secondary motor cortex, ipsilaterally and contralaterally projecting corticocortical cells are largely segregated. These layer 2 cell subtypes differ in dendrite morphological and intrinsic electrophysiological properties, and form subtype-dependent connections. Our results suggest that layer 2 pyramidal cells form distinct subcircuits to provide discrete corticocortical outputs.


2019 ◽  
Vol 85 (10) ◽  
pp. S280
Author(s):  
Se Hyun Kim ◽  
Hyun Sook Yu ◽  
Hong Geun Park ◽  
In Won Chung ◽  
Yong Sik Kim

Sign in / Sign up

Export Citation Format

Share Document