scholarly journals Cloning and Functional Characterization of Roaz, a Zinc Finger Protein that Interacts with O/E-1 to Regulate Gene Expression: Implications for Olfactory Neuronal Development

1997 ◽  
Vol 17 (11) ◽  
pp. 4159-4169 ◽  
Author(s):  
Robert Y. L. Tsai ◽  
Randall R. Reed
2020 ◽  
Author(s):  
Nikki R. Kong ◽  
Mahmoud A. Bassal ◽  
Hong Kee Tan ◽  
Jesse V. Kurland ◽  
Kol Jia Yong ◽  
...  

2019 ◽  
Author(s):  
Mario Houde ◽  
Arnaud Cheuk ◽  
François Ouellet

Abstract Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speeds up functional gene characterization.Results We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant’s life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected.Conclusions This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.


1991 ◽  
Vol 10 (10) ◽  
pp. 3087-3093 ◽  
Author(s):  
M. Köster ◽  
U. Kühn ◽  
T. Bouwmeester ◽  
W. Nietfeld ◽  
T. el-Baradi ◽  
...  

2020 ◽  
Author(s):  
Arnaud Cheuk ◽  
François Ouellet ◽  
Mario Houde

Abstract Background Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speeds up functional gene characterization. Results We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant’s life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected. Conclusions This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.


2020 ◽  
Author(s):  
Arnaud Cheuk ◽  
François Ouellet ◽  
Mario Houde

Abstract Background Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speeds up functional gene characterization. Results We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant’s life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected. Conclusions This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.


2020 ◽  
Author(s):  
Nikki R. Kong ◽  
Mahmoud A. Bassal ◽  
Hong Kee Tan ◽  
Jesse V. Kurland ◽  
Kol Jia Yong ◽  
...  

SummaryThe zinc finger transcription factor SALL4 is highly expressed in embryonic stem cells, down-regulated in most adult tissues, but reactivated in many aggressive cancers. This unique expression pattern makes SALL4 an attractive target for designing therapeutic strategies. However, whether SALL4 binds DNA directly to regulate gene expression is unclear and many of its targets in cancer cells remain elusive. Here, through an unbiased screen of protein binding microarray (PBM) and Cleavage Under Targets and Release Using Nuclease (CUT&RUN) experiments, we identified and validated the DNA binding domain of SALL4 and its consensus binding sequence. Combined with RNA-seq analyses after SALL4 knockdown, we discovered hundreds of new SALL4 target genes that it directly regulates in aggressive liver cancer cells, including genes encoding a family of Histone 3 Lysine 9-specific Demethylases (KDMs). Taken together, these results elucidated the mechanism of SALL4 DNA binding and revealed novel pathways and molecules to target in SALL4-dependent tumors.


Sign in / Sign up

Export Citation Format

Share Document