scholarly journals Evidence That 5-HT2AReceptors in the Hypothalamic Paraventricular Nucleus Mediate Neuroendocrine Responses to (−)DOI

2002 ◽  
Vol 22 (21) ◽  
pp. 9635-9642 ◽  
Author(s):  
Yahong Zhang ◽  
Katerina J. Damjanoska ◽  
Gonzalo A. Carrasco ◽  
Bertalan Dudas ◽  
Deborah N. D'Souza ◽  
...  
2013 ◽  
Vol 305 (10) ◽  
pp. R1112-R1123 ◽  
Author(s):  
T. Luise King ◽  
David D. Kline ◽  
Brian C. Ruyle ◽  
Cheryl M. Heesch ◽  
Eileen M. Hasser

Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60–90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.


2001 ◽  
Vol 281 (4) ◽  
pp. R1114-R1118 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Satoshi Miyahara ◽  
Takato Kunitake ◽  
Qing-Hua Jin ◽  
Kazuo Kato ◽  
...  

Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01–1.0 μM) depolarized 80.8% of type 1 ( n = 26) and 79.2% of type 2 neurons tested ( n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 μM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd2+(1 mM) to artificial cerebrospinal fluid containing TTX (1 μM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.


1993 ◽  
Vol 128 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Sandra Ceccatelli ◽  
Catello Orazzo

Using in situ hybridization we have studied the effects of different types of stressors, such as ether, immobilization, cold and swimming, on the expression of several peptide messenger ribonucleic acids (mRNAs) in the hypothalamic paraventricular nucleus of adult male rats. Paraventricular nucleus sections were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone, neurotensin, enkephalin and thyrotropin-releasing hormone. A clear upregulation of neurotensin mRNA was seen after ether and, to a lesser extent, after immobilization stress, whereas after the two other stressors neurotensin mRNA was undetectable, as in control rats. An increase in enkephalin mRNA was observed in a selective region of the dorsal part of the medioparvocellular subdivision of the paraventricular nucleus only after ether and immobilization stress. No significant changes were seen in corticotropin-releasing hormone and thyrotropin-releasing hormone mRNA levels in any of the experimental paradigms. The present results show selective changes for various peptide mRNAs in the paraventricular nucleus after various types of stress. Significant effects could be demonstrated only on neurotensin and enkephalin mRNA after ether and immobilization stress. This suggests that adaptive changes in the rate of synthesis, processing and transport of the peptide may develop over a longer period of time.


2013 ◽  
Vol 551 ◽  
pp. 43-46 ◽  
Author(s):  
Dan Wang ◽  
Hao Feng ◽  
Ying-Shun Li ◽  
De-Lai Qiu ◽  
Hua Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document