scholarly journals Inactivation of NMDA Receptors in the Ventral Tegmental Area during Cocaine Self-Administration Prevents GluA1 Upregulation but with Paradoxical Increases in Cocaine-Seeking Behavior

2017 ◽  
Vol 38 (3) ◽  
pp. 575-585 ◽  
Author(s):  
Daniel Guzman ◽  
Maria B. Carreira ◽  
Allyson K. Friedman ◽  
Megumi Adachi ◽  
Rachael L. Neve ◽  
...  
2017 ◽  
Vol 23 (1) ◽  
pp. 165-181 ◽  
Author(s):  
Wyju Jin ◽  
Min Sun Kim ◽  
Eun Young Jang ◽  
Jun Yeon Lee ◽  
Jin Gyeom Lee ◽  
...  

2021 ◽  
pp. 026988112110482
Author(s):  
Irena Smaga ◽  
Karolina Wydra ◽  
Agata Suder ◽  
Marek Sanak ◽  
Lucia Caffino ◽  
...  

Background: Cocaine use disorder is associated with compulsive drug-seeking and drug-taking, whereas relapse may be induced by several factors, including stress, drug-related places, people, and cues. Recent observations strongly support the involvement of the N-methyl-D-aspartate (NMDA) receptors in cocaine use disorders and abstinence, whereas withdrawal in different environments may affect the intensification of relapse. Methods: The aim of this study was to examine the GluN2B subunit expression and its association with the postsynaptic density protein 95 (PSD95) in several brain structures in rats with a history of cocaine self-administration and housed either in an enriched environment or in an isolated condition. Furthermore, a selective antagonist of the GluN2B subunit—CP 101,606 (10 and 20 mg/kg) administered during exposure to cocaine or a drug-associated conditional stimulus (a cue) was used to evaluate seeking behavior in rats. Results: In rats previously self-administering cocaine, we observed an increase in the GluN2B expression in the total homogenate from the dorsal hippocampus under both enriched environment and isolation. Cocaine abstinence under isolation conditions increased the GluN2B and GluN2B/PSD95 complex levels in the PSD fraction of the prelimbic cortex in rats previously self-administering cocaine. Administration of CP 101,606 attenuated cue-induced cocaine-seeking behavior only in isolation-housed rats. Conclusion: In summary, in this study we showed region-specific changes in both the expression of GluN2B subunit and NMDA receptor trafficking during cocaine abstinence under different housing conditions. Furthermore, we showed that the pharmacological blockade of the GluN2B subunit may be useful in attenuating cocaine-seeking behavior.


2021 ◽  
Author(s):  
Sasha L. Fulton ◽  
Swarup Mitra ◽  
Ashley E. Lepack ◽  
Jennifer A. Martin ◽  
David M. Dietz ◽  
...  

Persistent transcriptional events in ventral tegmental area (VTA) and other reward relevant brain regions contribute to enduring behavioral adaptations that characterize substance use disorder (SUD). Recent data from our laboratory indicate that aberrant accumulation of the newly discovered histone post-translational modification (PTM), H3 dopaminylation at glutamine 5 (H3Q5dop), contributes significantly to cocaine-seeking behavior following prolonged periods of abstinence. It remained unclear, however, whether this modification is important for relapse vulnerability in the context of other drugs of abuse, such as opioids. Here, we showed that H3Q5dop plays a critical role in heroin-mediated transcriptional plasticity in midbrain. In rats undergoing abstinence from heroin self-administration (SA), we found acute and persistent accumulation of H3Q5dop in VTA. By attenuating H3Q5dop during abstinence, we both altered gene expression programs associated with heroin withdrawal and reduced heroin-primed reinstatement behavior. These findings thus establish an essential role for H3Q5dop, and its downstream transcriptional consequences, in opioid-induced plasticity in VTA.


Science ◽  
2020 ◽  
Vol 368 (6487) ◽  
pp. 197-201 ◽  
Author(s):  
Ashley E. Lepack ◽  
Craig T. Werner ◽  
Andrew F. Stewart ◽  
Sasha L. Fulton ◽  
Ping Zhong ◽  
...  

Vulnerability to relapse during periods of attempted abstinence from cocaine use is hypothesized to result from the rewiring of brain reward circuitries, particularly ventral tegmental area (VTA) dopamine neurons. How cocaine exposures act on midbrain dopamine neurons to precipitate addiction-relevant changes in gene expression is unclear. We found that histone H3 glutamine 5 dopaminylation (H3Q5dop) plays a critical role in cocaine-induced transcriptional plasticity in the midbrain. Rats undergoing withdrawal from cocaine showed an accumulation of H3Q5dop in the VTA. By reducing H3Q5dop in the VTA during withdrawal, we reversed cocaine-mediated gene expression changes, attenuated dopamine release in the nucleus accumbens, and reduced cocaine-seeking behavior. These findings establish a neurotransmission-independent role for nuclear dopamine in relapse-related transcriptional plasticity in the VTA.


Sign in / Sign up

Export Citation Format

Share Document