scholarly journals Dynamic Influences on Coincidence Detection in Neocortical Pyramidal Neurons

2004 ◽  
Vol 24 (8) ◽  
pp. 1839-1851 ◽  
Author(s):  
L. A. Grande
2000 ◽  
Vol 83 (6) ◽  
pp. 3310-3322 ◽  
Author(s):  
Jilda S. Nettleton ◽  
William J. Spain

It has been hypothesized that voltage-sensitive conductances present on the dendrites of neurons can influence summation of excitatory postsynaptic potentials (EPSPs) and hence affect how neurons compile information. Greater than linear summation of EPSPs has been postulated to facilitate coincidence detection by cortical neurons. This study examined whether the summation of subthreshold AMPA-mediated EPSPs generated on layer V neocortical pyramidal neurons in vitro was linear and if any nonlinearities could be attributed to dendritic conductances. Evoked EPSPs (1–12 mV) were recorded somatically by means of intracellular sharp electrodes in the presence of 100 μM amino-5-phosphonopentanoic acid (AP-5) and 3 μM bicuculline. Two independent EPSPs were evoked by a stimulating electrode in layer I and another in layers III–V. The areas of stimulation were isolated from each other by a horizontal cut below layer I. By subtracting the algebraic sum of the individual EPSPs from the evoked response when both EPSPs were evoked simultaneously, we determined that they summed linearly to supralinearly. Supralinear summation was more likely when the soma was hyperpolarized by DC current injection. Summation was predominantly linear when postsynaptic conductances (i.e., Na+ and Ca2+) were blocked with intracellular QX-314. The supralinear summation of EPSPs (without QX-314) decreased as the time between inputs was increased from 0 to 30 ms. To determine the role of dendrites in nonlinear summation, we substituted a current pulse (simulated EPSP) delivered at the soma for either or both of the evoked EPSPs. Simulated EPSPs combined with either an evoked EPSP or another simulated EPSP showed significantly less supralinear summation than two evoked EPSPs, indicating that the dendritic conductances were largely responsible for the observed supralinear summation.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009416
Author(s):  
Eduarda Susin ◽  
Alain Destexhe

Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the exact role of these oscillations is still debated. Here, we used biophysical models to examine how Gamma oscillations may participate to the processing of afferent stimuli. We constructed conductance-based network models of Gamma oscillations, based on different cell types found in cerebral cortex. The models were adjusted to extracellular unit recordings in humans, where Gamma oscillations always coexist with the asynchronous firing mode. We considered three different mechanisms to generate Gamma, first a mechanism based on the interaction between pyramidal neurons and interneurons (PING), second a mechanism in which Gamma is generated by interneuron networks (ING) and third, a mechanism which relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We find that all three mechanisms generate features consistent with human recordings, but that the ING mechanism is most consistent with the firing rate change inside Gamma bursts seen in the human data. We next evaluated the responsiveness and resonant properties of these networks, contrasting Gamma oscillations with the asynchronous mode. We find that for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally lower during Gamma compared to asynchronous states, while resonant properties are similar around the Gamma band. We could not find conditions where Gamma oscillations were more responsive. We therefore predict that asynchronous states provide the highest responsiveness to external stimuli, while Gamma oscillations tend to overall diminish responsiveness.


2020 ◽  
Author(s):  
Lauren Tereshko ◽  
Ya Gao ◽  
Brian A. Cary ◽  
Gina G. Turrigiano ◽  
Piali Sengupta

ABSTRACTPrimary cilia are compartmentalized sensory organelles present on the majority of neurons in the mammalian brain throughout adulthood. Recent evidence suggests that cilia regulate multiple aspects of neuronal development, including the maintenance of neuronal connectivity. However, whether ciliary signals can dynamically modulate postnatal circuit excitability is unknown. Here we show that acute cell-autonomous knockdown of ciliary signaling rapidly strengthens glutamatergic inputs onto cultured neocortical pyramidal neurons, and increases spontaneous firing. This increased excitability occurs without changes to passive neuronal properties or intrinsic excitability. Further, the neuropeptide receptor somatostatin receptor 3 (SSTR3) is localized nearly exclusively to pyramidal neuron cilia both in vivo and in culture, and pharmacological manipulation of SSTR3 signaling bidirectionally modulates excitatory synaptic inputs onto these neurons. Our results indicate that ciliary neuropeptidergic signaling dynamically modulates excitatory synapses, and suggest that defects in this regulation may underlie a subset of behavioral and cognitive disorders associated with ciliopathies.


1998 ◽  
Vol 79 (5) ◽  
pp. 2522-2534 ◽  
Author(s):  
Juan Carlos Pineda ◽  
Robert S. Waters ◽  
Robert C. Foehring

Pineda, Juan Carlos, Roberts S. Waters, and Robert C. Foehring. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J. Neurophysiol. 79: 2522–2534, 1998. Intracellular recordings and organic and inorganic Ca2+ channel blockers were used in a neocortical brain slice preparation to test whether high-voltage–activated (HVA) Ca2+ channels are differentially coupled to Ca2+-dependent afterhyperpolarizations (AHPs) in sensorimotor neocortical pyramidal neurons. For the most part, spike repolarization was not Ca2+ dependent in these cells, although the final phase of repolarization (after the fast AHP) was sensitive to block of N-type current. Between 30 and 60% of the medium afterhyperpolarization (mAHP) and between ∼80 and 90% of the slow AHP (sAHP) were Ca2+ dependent. Based on the effects of specific organic Ca2+ channel blockers (dihydropyridines, ω-conotoxin GVIA, ω-agatoxin IVA, and ω-conotoxin MVIIC), the sAHP is coupled to N-, P-, and Q-type currents. P-type currents were coupled to the mAHP. L-type current was not involved in the generation of either AHP but (with other HVA currents) contributes to the inward currents that regulate interspike intervals during repetitive firing. These data suggest different functional consequences for modulation of Ca2+ current subtypes.


2004 ◽  
Vol 91 (1) ◽  
pp. 324-335 ◽  
Author(s):  
H. J. Abel ◽  
J.C.F. Lee ◽  
J. C. Callaway ◽  
R. C. Foehring

We examined the effects of recent discharge activity on [Ca2+]i in neocortical pyramidal cells. Our data confirm and extend the observation that there is a linear relationship between plateau [Ca2+]i and firing frequency in soma and proximal apical dendrites. The rise in [Ca2+] activates K+ channels underlying the afterhyperpolarization (AHP), which consists of 2 Ca2+-dependent components: the medium AHP (mAHP) and the slow AHP (sAHP). The mAHP is blocked by apamin, indicating involvement of SK-type Ca2+-dependent K+ channels. The identity of the apamin-insensitive sAHP channel is unknown. We compared the sAHP and the mAHP with regard to: 1) number and frequency of spikes versus AHP amplitude; 2) number and frequency of spikes versus [Ca2+]i; 3) IAHP versus [Ca2+]i. Our data suggest that sAHP channels require an elevation of [Ca2+]i in the cytoplasm, rather than at the membrane, consistent with a role for a cytoplasmic intermediate between Ca2+ and the K+ channels. The mAHP channels appear to respond to a restricted Ca2+ domain.


Sign in / Sign up

Export Citation Format

Share Document