scholarly journals Automatic and Controlled Semantic Retrieval: TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus

2015 ◽  
Vol 35 (46) ◽  
pp. 15230-15239 ◽  
Author(s):  
J. Davey ◽  
P. L. Cornelissen ◽  
H. E. Thompson ◽  
S. Sonkusare ◽  
G. Hallam ◽  
...  
2019 ◽  
Vol 31 (11) ◽  
pp. 1599-1616 ◽  
Author(s):  
Charlotte Murphy ◽  
Shirley-Ann Rueschemeyer ◽  
Jonathan Smallwood ◽  
Elizabeth Jefferies

In the absence of sensory information, we can generate meaningful images and sounds from representations in memory. However, it remains unclear which neural systems underpin this process and whether tasks requiring the top–down generation of different kinds of features recruit similar or different neural networks. We asked people to internally generate the visual and auditory features of objects, either in isolation (car, dog) or in specific and complex meaning-based contexts (car/dog race). Using an fMRI decoding approach, in conjunction with functional connectivity analysis, we examined the role of auditory/visual cortex and transmodal brain regions. Conceptual retrieval in the absence of external input recruited sensory and transmodal cortex. The response in transmodal regions—including anterior middle temporal gyrus—was of equal magnitude for visual and auditory features yet nevertheless captured modality information in the pattern of response across voxels. In contrast, sensory regions showed greater activation for modality-relevant features in imagination (even when external inputs did not differ). These data are consistent with the view that transmodal regions support internally generated experiences and that they play a role in integrating perceptual features encoded in memory.


Author(s):  
Takahiro Yamanoi ◽  
◽  
Yoshinori Tanaka ◽  
Mika Otsuki ◽  
Shin-ichi Ohnishi ◽  
...  

The authors measure electroencephalograms (EEGs) from a subject looking at line drawings of body parts and recalling their names silently. The equivalent current dipole source localization (ECDL) method is applied to the event related potentials (ERPs): summed EEGs. As the dominant language area of the subject is considered to be in the right hemisphere in the previous research study, ECDs are localized to the right middle temporal gyrus: the angular gyrus. Then ECDs are localized to the right fusiform gyrus, the right middle temporal pole (TEP), and the right inferior temporal white matter (TWM). ECDs are located in the ventral pathway. The areas are related to the integrated process of visual recognition of pictures and the recalling of words. Some of these areas are also related to image recognition and word generation.


2022 ◽  
Author(s):  
Fatih Yakar ◽  
Pınar Çeltikçi ◽  
Yücel Doğruel ◽  
Emrah Egemen ◽  
Abuzer Güngör

Abstract The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered as a continuation of the superior/middle temporal gyrus and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red blue silicone injected eight human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were found to be associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, different functions of the subunits have been revealed with cadaveric dissection and tractography images.


2020 ◽  
Vol 32 (2) ◽  
pp. 256-271 ◽  
Author(s):  
Sigfus Kristinsson ◽  
Helga Thors ◽  
Grigori Yourganov ◽  
Sigridur Magnusdottir ◽  
Haukur Hjaltason ◽  
...  

Left-hemisphere brain damage commonly affects patients' abilities to produce and comprehend syntactic structures, a condition typically referred to as “agrammatism.” The neural correlates of agrammatism remain disputed in the literature, and distributed areas have been implicated as important predictors of performance, for example, Broca's area, anterior temporal areas, and temporo-parietal areas. We examined the association between damage to specific language-related ROIs and impaired syntactic processing in acute aphasia. We hypothesized that damage to the posterior middle temporal gyrus, and not Broca's area, would predict syntactic processing abilities. One hundred four individuals with acute aphasia (<20 days poststroke) were included in the study. Structural MRI scans were obtained, and all participants completed a 45-item sentence–picture matching task. We performed an ROI-based stepwise regression analyses to examine the relation between cortical brain damage and impaired comprehension of canonical and noncanonical sentences. Damage to the posterior middle temporal gyrus was the strongest predictor for overall task performance and performance on noncanonical sentences. Damage to the angular gyrus was the strongest predictor for performance on canonical sentences, and damage to the posterior superior temporal gyrus predicted noncanonical scores when performance on canonical sentences was included as a cofactor. Overall, our models showed that damage to temporo-parietal and posterior temporal areas was associated with impaired syntactic comprehension. Our results indicate that the temporo-parietal area is crucially implicated in complex syntactic processing, whereas the role of Broca's area may be complementary.


1888 ◽  
Vol 43 (258-265) ◽  
pp. 411-412 ◽  

Conjugate deviation of the eyes to the opposite side is produced by excitation of entirely different regions of the cerebral cortex. The parts which when electrically excited produce this movement are: (1) An area in the frontal region of the hemisphere which is included in the motor or psychomotor zone of authors; (2) the superior temporal gyrus; (3) the upper end of the middle temporal gyrus; (4) the posterior limb of the angular gyrus; (5) the whole cortex of the occipital lobe including its mesial and under surfaces; (6) the quadrate lobule.


2021 ◽  
pp. 154596832199905
Author(s):  
Janina Wilmskoetter ◽  
Julius Fridriksson ◽  
Alexandra Basilakos ◽  
Lorelei Phillip Johnson ◽  
Barbara Marebwa ◽  
...  

Background White matter disconnection of language-specific brain regions associates with worse aphasia recovery. Despite a loss of direct connections, many stroke survivors may maintain indirect connections between brain regions. Objective To determine (1) whether preserved direct connections between language-specific brain regions relate to better poststroke naming treatment outcomes compared to no direct connections and (2) whether for individuals with a loss of direct connections, preserved indirect connections are associated with better treatment outcomes compared to individuals with no connections. Methods We computed structural whole-brain connectomes from 69 individuals with chronic left-hemisphere stroke and aphasia who completed a 3-week-long language treatment that was supplemented by either anodal transcranial direct current stimulation (A-tDCS) or sham stimulation (S-tDCS). We determined differences in naming improvement between individuals with direct, indirect, and no connections using 1-way analyses of covariance and multivariable linear regressions. Results Independently of tDCS modality, direct or indirect connections between the inferior frontal gyrus pars opercularis and angular gyrus were both associated with a greater increase in correct naming compared to no connections ( P = .027 and P = .039, respectively). Participants with direct connections between the inferior frontal gyrus pars opercularis and middle temporal gyrus who received S-tDCS and participants with indirect connections who received A-tDCS significantly improved in naming accuracy. Conclusions Poststroke preservation of indirect white matter connections is associated with better treated naming improvement in aphasia even when direct connections are damaged. This mechanistic information can be used to stratify and predict treated naming recovery in individuals with aphasia.


2018 ◽  
Vol 29 (4) ◽  
pp. 1520-1531 ◽  
Author(s):  
Bianca M van Kemenade ◽  
B Ezgi Arikan ◽  
Kornelius Podranski ◽  
Olaf Steinsträter ◽  
Tilo Kircher ◽  
...  

2020 ◽  
Vol 32 (8) ◽  
pp. 1466-1483
Author(s):  
Atsuko Takashima ◽  
Agnieszka Konopka ◽  
Antje Meyer ◽  
Peter Hagoort ◽  
Kirsten Weber

This neuroimaging study investigated the neural infrastructure of sentence-level language production. We compared brain activation patterns, as measured with BOLD-fMRI, during production of sentences that differed in verb argument structures (intransitives, transitives, ditransitives) and the lexical status of the verb (known verbs or pseudoverbs). The experiment consisted of 30 mini-blocks of six sentences each. Each mini-block started with an example for the type of sentence to be produced in that block. On each trial in the mini-blocks, participants were first given the (pseudo-)verb followed by three geometric shapes to serve as verb arguments in the sentences. Production of sentences with known verbs yielded greater activation compared to sentences with pseudoverbs in the core language network of the left inferior frontal gyrus, the left posterior middle temporal gyrus, and a more posterior middle temporal region extending into the angular gyrus, analogous to effects observed in language comprehension. Increasing the number of verb arguments led to greater activation in an overlapping left posterior middle temporal gyrus/angular gyrus area, particularly for known verbs, as well as in the bilateral precuneus. Thus, producing sentences with more complex structures using existing verbs leads to increased activation in the language network, suggesting some reliance on memory retrieval of stored lexical–syntactic information during sentence production. This study thus provides evidence from sentence-level language production in line with functional models of the language network that have so far been mainly based on single-word production, comprehension, and language processing in aphasia.


Sign in / Sign up

Export Citation Format

Share Document