fiber dissection
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Fatih Yakar ◽  
Pınar Çeltikçi ◽  
Yücel Doğruel ◽  
Emrah Egemen ◽  
Abuzer Güngör

Abstract The angular gyrus (AG) wraps the posterior end of the superior temporal sulcus (STS), so it is considered as a continuation of the superior/middle temporal gyrus and forms the inferior parietal lobule (IPL) with the supramarginal gyrus (SMG). The AG was functionally divided in the literature, but there is no fiber dissection study in this context. This study divided AG into superior (sAG) and inferior (iAG) parts by focusing on STS. Red blue silicone injected eight human cadaveric cerebrums were dissected via the Klingler method focusing on the AG. White matter (WM) tracts identified during dissection were then reconstructed on the Human Connectome Project 1065 individual template for validation. According to this study, superior longitudinal fasciculus (SLF) II and middle longitudinal fasciculus (MdLF) are associated with sAG; the anterior commissure (AC), optic radiation (OR) with iAG; the arcuate fasciculus (AF), inferior frontooccipital fasciculus (IFOF), and tapetum (Tp) with both parts. In cortical parcellation of AG based on STS, sAG and iAG were found to be associated with different fiber tracts. Although it has been shown in previous studies that there are functionally different subunits with AG parcellation, here, for the first time, different functions of the subunits have been revealed with cadaveric dissection and tractography images.


2021 ◽  
Author(s):  
Spyridon Komaitis ◽  
Theodosis Kalamatianos ◽  
Evangelos Drosos ◽  
Aristotelis Kalyvas ◽  
Maria Piagkou ◽  
...  

Abstract OBJECTIVE: To provide an educational, comprehensive, systematic and stepwise manual for the dissection and illustration of major limbic structures since there is a gap in the pertinent literature. Further, we aim to offer a thorough yet simplified roadmap for laboratory and intraoperative dissections.METHODS: Twenty (20) normal adult, formalin-fixed cerebral hemispheres were studied through the fiber dissection technique and under the microscope. Stepwise and in tandem medial to lateral and lateral to medial dissections were performed in all specimens aiming to reveal the morphology and spatial relationships of major limbic and paralimbic areas RESULTS: Twelve (12) consecutive, discrete and easily reproducible laboratory anatomical steps are systematically described to reveal the intricate anatomy of the structures of the limbic system.CONCLUSION: Surgical approaches for lesions or functional resections in and around limbic areas pose a challenging task for the neurosurgeon. By employing the fiber dissection technique, we were able to provide a stepwise and thorough laboratory guide for the gradual dissection and better comprehension of the morphology and spatial relationships of this specific system. Anatomical manuals like the present study raise interest and enrich anatomical knowledge on complex cerebral areas with the overarching goal to inform surgical practice.


Author(s):  
Abhidha Shah ◽  
Sukhdeep Jhawar ◽  
Aimee Goel ◽  
Atul Goel

2021 ◽  
pp. 1-9
Author(s):  
Igor Lima Maldonado ◽  
Christophe Destrieux ◽  
Eduardo Carvalhal Ribas ◽  
Bruna Siqueira de Abreu Brito Guimarães ◽  
Patrícia Pontes Cruz ◽  
...  

OBJECTIVEThe sagittal stratum is divided into two layers. In classic descriptions, the stratum sagittale internum corresponds to optic radiations (RADs), whereas the stratum sagittale externum corresponds to fibers of the inferior longitudinal fasciculus. Although advanced for the time it was proposed, this schematic organization seems simplistic considering the recent progress on the understanding of cerebral connectivity and needs to be updated. Therefore, the authors sought to investigate the composition of the sagittal stratum and to detail the anatomical relationships among the macroscopic fasciculi.METHODSThe authors performed a layer-by-layer fiber dissection from the superolateral aspect to the ventricular cavity in 20 cadaveric human hemispheres.RESULTSDiverse bundles of white matter were observed to contribute to the sagittal stratum and their spatial arrangement was highly consistent from one individual to another. This was the case of the middle longitudinal fasciculus, the inferior fronto-occipital fasciculus, the RADs, and other posterior thalamic radiations directed to nonvisual areas of the cerebral cortex. In addition, small contributions to the sagittal stratum came from the anterior commissure anteriorly and the inferior longitudinal fasciculus inferiorly.CONCLUSIONSA general model of sagittal stratum organization in layers is possible, but the composition of the external layer is much more complex than is mentioned in classic descriptions. A small contribution of the inferior longitudinal fasciculus is the main difference between the present results and the classic descriptions in which this bundle was considered to entirely correspond to the stratum sagittale externum. This subject has important implications both for fundamental research and neurosurgery, as well as for the development of surgical approaches for the cerebral parenchyma and ventricular system.


2021 ◽  
pp. 1-13
Author(s):  
Spyridon Komaitis ◽  
Christos Koutsarnakis ◽  
Evgenia Lani ◽  
Theodosis Kalamatianos ◽  
Evangelos Drosos ◽  
...  

OBJECTIVEThe authors sought to investigate the very existence and map the topography, morphology, and axonal connectivity of a thus far ill-defined subcortical pathway known as the fronto-caudate tract (FCT) since there is a paucity of direct structural evidence regarding this pathway in the relevant literature.METHODSTwenty normal adult cadaveric formalin-fixed cerebral hemispheres (10 left and 10 right) were explored through the fiber microdissection technique. Lateral to medial and medial to lateral dissections were carried out in a tandem manner in all hemispheres. Attention was focused on the prefrontal area and central core since previous diffusion tensor imaging studies have recorded the tract to reside in this territory.RESULTSIn all cases, the authors readily identified the FCT as a fan-shaped pathway lying in the most medial layer of the corona radiata and traveling across the subependymal plane before terminating on the superolateral margin of the head and anterior part of the body of the caudate nucleus. The FCT could be adequately differentiated from adjacent fiber tracts and was consistently recorded to terminate in Brodmann areas 8, 9, 10, and 11 (anterior pre–supplementary motor area and the dorsolateral, frontopolar, and fronto-orbital prefrontal cortices). The authors were also able to divide the tract into a ventral and a dorsal segment according to the respective topography and connectivity observed. Hemispheric asymmetries were not observed, but instead the authors disclosed asymmetry within the FCT, with the ventral segment always being thicker and bulkier than the dorsal one.CONCLUSIONSBy using the fiber microdissection technique, the authors provide sound structural evidence on the topography, morphology, and connectional anatomy of the FCT as a distinct part of a wider frontostriatal circuitry. The findings are in line with the tract’s putative functional implications in high-order motor and behavioral processes and can potentially inform current surgical practice in the fields of neuro-oncology and functional neurosurgery.


Author(s):  
Emrah Egemen ◽  
Pinar Celtikci ◽  
Yücel Dogruel ◽  
Fatih Yakar ◽  
Defne Sahinoglu ◽  
...  

Abstract BACKGROUND Approaching ambient cistern lesions is still a challenge because of deep location and related white matter tracts (WMTs) and neural structures. OBJECTIVE To investigate the white matter anatomy in the course of 3 types of transtemporal-transchoroidal fissure approaches (TTcFA) to ambient cistern by using fiber dissection technique with translumination and magnetic resonance imaging fiber tractography. METHODS Eight formalin-fixed cerebral hemispheres were dissected on surgical corridor from the temporal cortex to the ambient cistern by using Klingler's method. The trans-middle temporal gyrus, trans-inferior temporal sulcus (TITS), and trans-inferior temporal gyrus (TITG) approaches were evaluated. WMTs that were identified during dissection were then reconstructed on the Human Connectome Project 1021 individual template for validation. RESULTS The trans-middle gyrus approach interrupted the U fibers, arcuate fasciculus (AF), the ventral segment of inferior frontoocipital fasciculus (IFOF), the temporal extensions of the anterior commissure (AC) posterior crura, the tapetum (Tp) fibers, and the anterior loop of the optic radiation (OR). The TITS approach interrupted U fibers, inferior longitudinal fasciculus (ILF), IFOF, and OR. The TITG approach interrupted the U fibers, ILF, and OR. The middle longitudinal fasciculus, ILF, and uncinate fasciculus (UF) were not interrupted in the trans-middle gyrus approach and the AF, UF, AC, and Tp fibers were not interrupted in the TITS/gyrus approaches. CONCLUSION Surgical planning of the ambient cistern lesions requires detailed knowledge about WMTs. Fiber dissection and tractography techniques improve the orientation during surgery and may help decrease surgical complications.


2020 ◽  
Vol 1746 ◽  
pp. 146978
Author(s):  
Mengjun Li ◽  
Eduardo Carvalhal Ribas ◽  
Penghu Wei ◽  
Mingchu Li ◽  
Hongqi Zhang ◽  
...  
Keyword(s):  

Author(s):  
Sebastian Ille ◽  
Ann-Katrin Ohlerth ◽  
David Colle ◽  
Henry Colle ◽  
Olga Dragoy ◽  
...  

Abstract Background The human white matter pathway network is complex and of critical importance for functionality. Thus, learning and understanding white matter tract anatomy is important for the training of neuroscientists and neurosurgeons. The study aims to test and evaluate a new method for fiber dissection using augmented reality (AR) in a group which is experienced in cadaver white matter dissection courses and in vivo tractography. Methods Fifteen neurosurgeons, neurolinguists, and neuroscientists participated in this questionnaire-based study. We presented five cases of patients with left-sided perisylvian gliomas who underwent awake craniotomy. Diffusion tensor imaging fiber tracking (DTI FT) was performed and the language-related networks were visualized separated in different tracts by color. Participants were able to virtually dissect the prepared DTI FTs using a spatial computer and AR goggles. The application was evaluated through a questionnaire with answers from 0 (minimum) to 10 (maximum). Results Participants rated the overall experience of AR fiber dissection with a median of 8 points (mean ± standard deviation 8.5 ± 1.4). Usefulness for fiber dissection courses and education in general was rated with 8 (8.3 ± 1.4) and 8 (8.1 ± 1.5) points, respectively. Educational value was expected to be high for several target audiences (student: median 9, 8.6 ± 1.4; resident: 9, 8.5 ± 1.8; surgeon: 9, 8.2 ± 2.4; scientist: 8.5, 8.0 ± 2.4). Even clinical application of AR fiber dissection was expected to be of value with a median of 7 points (7.0 ± 2.5). Conclusion The present evaluation of this first application of AR for fiber dissection shows a throughout positive evaluation for educational purposes.


Sign in / Sign up

Export Citation Format

Share Document