scholarly journals Brain Damage Associated with Impaired Sentence Processing in Acute Aphasia

2020 ◽  
Vol 32 (2) ◽  
pp. 256-271 ◽  
Author(s):  
Sigfus Kristinsson ◽  
Helga Thors ◽  
Grigori Yourganov ◽  
Sigridur Magnusdottir ◽  
Haukur Hjaltason ◽  
...  

Left-hemisphere brain damage commonly affects patients' abilities to produce and comprehend syntactic structures, a condition typically referred to as “agrammatism.” The neural correlates of agrammatism remain disputed in the literature, and distributed areas have been implicated as important predictors of performance, for example, Broca's area, anterior temporal areas, and temporo-parietal areas. We examined the association between damage to specific language-related ROIs and impaired syntactic processing in acute aphasia. We hypothesized that damage to the posterior middle temporal gyrus, and not Broca's area, would predict syntactic processing abilities. One hundred four individuals with acute aphasia (<20 days poststroke) were included in the study. Structural MRI scans were obtained, and all participants completed a 45-item sentence–picture matching task. We performed an ROI-based stepwise regression analyses to examine the relation between cortical brain damage and impaired comprehension of canonical and noncanonical sentences. Damage to the posterior middle temporal gyrus was the strongest predictor for overall task performance and performance on noncanonical sentences. Damage to the angular gyrus was the strongest predictor for performance on canonical sentences, and damage to the posterior superior temporal gyrus predicted noncanonical scores when performance on canonical sentences was included as a cofactor. Overall, our models showed that damage to temporo-parietal and posterior temporal areas was associated with impaired syntactic comprehension. Our results indicate that the temporo-parietal area is crucially implicated in complex syntactic processing, whereas the role of Broca's area may be complementary.

2017 ◽  
Author(s):  
Corianne Rogalsky ◽  
Arianna N. LaCroix ◽  
Kuan-Hua Chen ◽  
Steven W. Anderson ◽  
Hanna Damasio ◽  
...  

AbstractBroca’s area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of “agrammatic comprehension” in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared to canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca’s area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. The present study investigates these seemingly conflicting findings in 66 left hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca’s area (but excluding the temporal lobe; n=11) on average did not exhibit the expected agrammatic comprehension pattern, e.g. their performance was > 80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage (n=18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion symptom mapping (VLSM), we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca’s area. Notably however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca’s area, suggesting that the contribution of Broca’s area to sentence comprehension may be related to task-related cognitive demands.


2018 ◽  
Vol 30 (2) ◽  
pp. 234-255 ◽  
Author(s):  
Corianne Rogalsky ◽  
Arianna N. LaCroix ◽  
Kuan-Hua Chen ◽  
Steven W. Anderson ◽  
Hanna Damasio ◽  
...  

Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of “agrammatic comprehension” in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion–symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence–picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern—for example, their performance was >80% on noncanonical sentences in the sentence–picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion–symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal–inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.


2008 ◽  
Vol 46 (5) ◽  
pp. 1371-1378 ◽  
Author(s):  
Suiping Wang ◽  
Zude Zhu ◽  
John X. Zhang ◽  
Zhaoxin Wang ◽  
Zhuangwei Xiao ◽  
...  

2007 ◽  
Vol 58 ◽  
pp. S116
Author(s):  
Kazuki Iijima ◽  
Naoki Fukui ◽  
Kuniyoshi L. Sakai

2018 ◽  
Vol 7 (2) ◽  
pp. 172-185
Author(s):  
Nurlaila Nurlaila

This study concerned mainly on the islamic values encountered in human language production and comprehension as a mental process. The production of language of human being positioned in  Broca’s area and comprehension of language is located in Wernike’s area which are located in human left brain. The process of language in human brain is very abstract; it could not be directly seen by naked eyes. It was done by activating some features of the brain such as Broca’s area, Wernike’s area, angular gyrus, motor cortex, etc. Based on psycholinguistics theory, ability to speak or produce meaningful sounds were innate in human. Its meant that human were genetically predisposed to learn and use language. The phenomenon were closely related to islamics values that those facts specifically and delibrately created by God; the Almighty Allah with certain purposes and that regularity was shown in the nature of thing in the earth. This research aims at investigating the islamic values encountered in human language production and comprehension. This is a descriptive qualitative reasearch that the researcher herself functioned as the key instrument. It was found out that there were several kinds of islamic values found in human language production and comprehension namely social, moral, economical, and religious values.   Key Words: Islamic Value, Language Production and Comprehension, Mental Process


Author(s):  
Takahiro Yamanoi ◽  
◽  
Yoshinori Tanaka ◽  
Mika Otsuki ◽  
Shin-ichi Ohnishi ◽  
...  

The authors measure electroencephalograms (EEGs) from a subject looking at line drawings of body parts and recalling their names silently. The equivalent current dipole source localization (ECDL) method is applied to the event related potentials (ERPs): summed EEGs. As the dominant language area of the subject is considered to be in the right hemisphere in the previous research study, ECDs are localized to the right middle temporal gyrus: the angular gyrus. Then ECDs are localized to the right fusiform gyrus, the right middle temporal pole (TEP), and the right inferior temporal white matter (TWM). ECDs are located in the ventral pathway. The areas are related to the integrated process of visual recognition of pictures and the recalling of words. Some of these areas are also related to image recognition and word generation.


2009 ◽  
Vol 21 (12) ◽  
pp. 2434-2444 ◽  
Author(s):  
David January ◽  
John C. Trueswell ◽  
Sharon L. Thompson-Schill

For over a century, a link between left prefrontal cortex and language processing has been accepted, yet the precise characterization of this link remains elusive. Recent advances in both the study of sentence processing and the neuroscientific study of frontal lobe function suggest an intriguing possibility: The demands to resolve competition between incompatible characterizations of a linguistic stimulus may recruit top–down cognitive control processes mediated by prefrontal cortex. We use functional magnetic resonance imaging to test the hypothesis that individuals use shared prefrontal neural circuitry during two very different tasks—color identification under Stroop conflict and sentence comprehension under conditions of syntactic ambiguity—both of which putatively rely on cognitive control processes. We report the first demonstration of within-subject overlap in neural responses to syntactic and nonsyntactic conflict. These findings serve to clarify the role of Broca's area in, and the neural and psychological organization of, the language processing system.


1996 ◽  
Vol 19 (4) ◽  
pp. 634-635 ◽  
Author(s):  
Angela D. Friederici

AbstractBoth autonomy and local specificity are compatible with observed interconnectivity at the cell level when considering two different levels: cell assemblies and brain systems. Early syntactic structuring processes in particular are likely to representan autonomous module in the language/brain system.


2015 ◽  
Vol 30 (10) ◽  
pp. 1326-1338 ◽  
Author(s):  
Corianne Rogalsky ◽  
Diogo Almeida ◽  
Jon Sprouse ◽  
Gregory Hickok

Sign in / Sign up

Export Citation Format

Share Document