scholarly journals Synaptic and Cellular Properties of the Feedforward Inhibitory Circuit within the Input Layer of the Cerebellar Cortex

2008 ◽  
Vol 28 (36) ◽  
pp. 8955-8967 ◽  
Author(s):  
R. T. Kanichay ◽  
R. A. Silver
2019 ◽  
Author(s):  
Frederic Lanore ◽  
Jason S. Rothman ◽  
Diccon Coyle ◽  
R. Angus Silver

SummaryGolgi cells (GoCs) are the main inhibitory interneurons in the input layer of the cerebellar cortex and are electrically coupled together, forming syncytia. GoCs control the excitability of granule cells (GCs) through feedforward, feedback and spillover-mediated inhibition. The GoC circuit therefore plays a central role in determining how sensory and motor information is transformed as it flows through the cerebellar input layer. Recent work has shown that GCs are activated when animals perform active behaviours, but the underlying mechanisms remain poorly understood. Norepinephrine (NE), also known as noradrenaline, is a powerful modulator of network function during active behavioral states and the axons of NE-releasing neurons in the locus coeruleus innervate the cerebellar cortex. Here we show that NE hyperpolarizes the GoC membrane potential, decreases spontaneous firing and reduces the gain of the spike frequency versus input-current relationship. The GoC membrane hyperpolarization can be mimicked with an α2-noradrenergic agonist, inhibited with a specific α2 antagonist and is abolished when G protein-coupled inwardly-rectifying potassium (GIRK) channels are blocked. Moreover, NE reduces the effective electrical coupling between GoCs through a persistent sodium current (INaP)-dependent mechanism. Our results suggest that NE controls the gain of the GoC inhibitory circuit by modulating membrane conductances that act to reduce membrane excitability and decrease electrical coupling. These mechanisms appear configured to reduce the level of GoC inhibition onto GCs during active behavioural states.


2021 ◽  
Author(s):  
Chong Guo ◽  
Stephanie Rudolph ◽  
Morgan E. Neuwirth ◽  
Wade G. Regehr

AbstractCircuitry of the cerebellar cortex is regionally and functionally specialized. Unipolar brush cells (UBCs), and Purkinje cell (PC) synapses made by axon collaterals in the granular layer, are both enriched in areas that control balance and eye-movement. Here we find a link between these specializations: PCs preferentially inhibit mGluR1-expressing UBCs that respond to mossy fiber inputs with long lasting increases in firing, but PCs do not inhibit mGluR1-lacking UBCs. PCs inhibit about 29% of mGluR1-expressing UBCs by activating GABAA receptors (GABAARs) and inhibit almost all mGluR1-expressing UBCs by activating GABABRs. PC to UBC synapses allow PC output to regulate the input layer of the cerebellar cortex in diverse ways. GABAAR-mediated feedback is fast, unreliable, noisy, and suited to linearizing input-output curves and decreasing gain. Slow GABABR-mediated inhibition allows elevated PC activity to sharpen the input-output transformation of UBCs, and allows dynamic inhibitory feedback of mGluR1-expressing UBCs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Chong Guo ◽  
Stephanie Rudolph ◽  
Morgan E Neuwirth ◽  
Wade G Regehr

Circuitry of the cerebellar cortex is regionally and functionally specialized. Unipolar brush cells (UBCs), and Purkinje cell (PC) synapses made by axon collaterals in the granular layer, are both enriched in areas that control balance and eye movement. Here, we find a link between these specializations in mice: PCs preferentially inhibit metabotropic glutamate receptor type 1 (mGluR1)-expressing UBCs that respond to mossy fiber (MF) inputs with long lasting increases in firing, but PCs do not inhibit mGluR1-lacking UBCs. PCs inhibit about 29% of mGluR1-expressing UBCs by activating GABAA receptors (GABAARs) and inhibit almost all mGluR1-expressing UBCs by activating GABAB receptors (GABABRs). PC to UBC synapses allow PC output to regulate the input layer of the cerebellar cortex in diverse ways. Based on optogenetic studies and a small number of paired recordings, GABAAR-mediated feedback is fast and unreliable. GABABR-mediated inhibition is slower and is sufficiently large to strongly influence the input-output transformations of mGluR1-expressing UBCs.


Sign in / Sign up

Export Citation Format

Share Document