scholarly journals Norepinephrine controls the gain of the inhibitory circuit in the cerebellar input layer

2019 ◽  
Author(s):  
Frederic Lanore ◽  
Jason S. Rothman ◽  
Diccon Coyle ◽  
R. Angus Silver

SummaryGolgi cells (GoCs) are the main inhibitory interneurons in the input layer of the cerebellar cortex and are electrically coupled together, forming syncytia. GoCs control the excitability of granule cells (GCs) through feedforward, feedback and spillover-mediated inhibition. The GoC circuit therefore plays a central role in determining how sensory and motor information is transformed as it flows through the cerebellar input layer. Recent work has shown that GCs are activated when animals perform active behaviours, but the underlying mechanisms remain poorly understood. Norepinephrine (NE), also known as noradrenaline, is a powerful modulator of network function during active behavioral states and the axons of NE-releasing neurons in the locus coeruleus innervate the cerebellar cortex. Here we show that NE hyperpolarizes the GoC membrane potential, decreases spontaneous firing and reduces the gain of the spike frequency versus input-current relationship. The GoC membrane hyperpolarization can be mimicked with an α2-noradrenergic agonist, inhibited with a specific α2 antagonist and is abolished when G protein-coupled inwardly-rectifying potassium (GIRK) channels are blocked. Moreover, NE reduces the effective electrical coupling between GoCs through a persistent sodium current (INaP)-dependent mechanism. Our results suggest that NE controls the gain of the GoC inhibitory circuit by modulating membrane conductances that act to reduce membrane excitability and decrease electrical coupling. These mechanisms appear configured to reduce the level of GoC inhibition onto GCs during active behavioural states.

1991 ◽  
Vol 260 (6) ◽  
pp. H1810-H1818
Author(s):  
M. R. Gold ◽  
G. R. Strichartz

Acute effects of repetitive depolarization on the inward Na+ current (INa) of cultured embryonic chick atrial cells were studied using the whole cell patch-clamp technique. Stimulation rates of 1 Hz or greater produced a progressive decrement of peak INa. With depolarizations to 0 mV of 150-ms duration, applied at 2 Hz from a holding potential of -100 mV, the steady-state decrement was approximately 20%. The magnitude of this effect increased with stimulation frequency and with test potential depolarization and decreased with membrane hyperpolarization. Analysis of INa kinetics revealed that reactivation was sufficiently slow to preclude complete recovery from inactivation with interpulse intervals less than 1,000 ms. Moreover, reactivation accelerated markedly with membrane hyperpolarization, in parallel with the response to repetitive stimulation. The multiexponential time course of recovery of peak INa from repetitive depolarization was similar to that observed after single stimuli; however, there was a shift toward a greater proportion of current recovering with the slower of two time constants. It is concluded that incomplete recovery from inactivation is responsible for the decrement in INa observed with short interpulse intervals.


Neuron ◽  
2016 ◽  
Vol 91 (6) ◽  
pp. 1330-1341 ◽  
Author(s):  
Chong Guo ◽  
Laurens Witter ◽  
Stephanie Rudolph ◽  
Hunter L. Elliott ◽  
Katelin A. Ennis ◽  
...  

2007 ◽  
Vol 97 (1) ◽  
pp. 248-263 ◽  
Author(s):  
Fidel Santamaria ◽  
Patrick G. Tripp ◽  
James M. Bower

Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential “beamlike” activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. This prediction was tested, in vivo, by recording PCs sharing a common set of pfs before and after pharmacologically blocking inhibitory inputs. As predicted by the model, pf-induced beams of excitatory PC responses were seen only when inhibition was blocked. Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.


1999 ◽  
Vol 82 (2) ◽  
pp. 804-817 ◽  
Author(s):  
Nicolas Schweighofer ◽  
Kenji Doya ◽  
Mitsuo Kawato

As a step in exploring the functions of the inferior olive, we constructed a biophysical model of the olivary neurons to examine their unique electrophysiological properties. The model consists of two compartments to represent the known distribution of ionic currents across the cell membrane, as well as the dendritic location of the gap junctions and synaptic inputs. The somatic compartment includes a low-threshold calcium current ( I Ca_l), an anomalous inward rectifier current ( I h), a sodium current ( I Na), and a delayed rectifier potassium current ( I K_dr). The dendritic compartment contains a high-threshold calcium current ( I Ca_h), a calcium-dependent potassium current ( I K_Ca), and a current flowing into other cells through electrical coupling ( I c). First, kinetic parameters for these currents were set according to previously reported experimental data. Next, the remaining free parameters were determined to account for both static and spiking properties of single olivary neurons in vitro. We then performed a series of simulated pharmacological experiments using bifurcation analysis and extensive two-parameter searches. Consistent with previous studies, we quantitatively demonstrated the major role of I Ca_l in spiking excitability. In addition, I h had an important modulatory role in the spike generation and period of oscillations, as previously suggested by Bal and McCormick. Finally, we investigated the role of electrical coupling in two coupled spiking cells. Depending on the coupling strength, the hyperpolarization level, and the I Ca_l and I hmodulation, the coupled cells had four different synchronization modes: the cells could be in-phase, phase-shifted, or anti-phase or could exhibit a complex desynchronized spiking mode. Hence these simulation results support the counterintuitive hypothesis that electrical coupling can desynchronize coupled inferior olive cells.


1992 ◽  
Vol 70 (S1) ◽  
pp. S32-S43 ◽  
Author(s):  
Lukasz M. Konopka ◽  
Laura A. Merriam ◽  
Jean C. Hardwick ◽  
Rodney L. Parsons

Correlated histochemical, immunocytochemical, and electrophysiological experiments have been undertaken to identify putative neurotransmitter–neuromodulator substances in cells and fibers in the parasympathetic cardiac ganglion of the mudpuppy, Necturus maculosus, and to determine the action of these agents on the properties of the parasympathetic postganglionic neurons. The mudpuppy cardiac ganglion contains two neuron types: large parasympathetic postganglionic neurons and smaller intrinsic neurons initially identified as small intensely fluorescent cells. We have shown that the postganglionic neurons contain both acetylcholine and a galanin-like neuropeptide. Also, we have demonstrated that the intrinsic neurons contain a number of different biogenic amines such as dopamine and serotonin, as well as neuropeptides including a substance P-like peptide and a galanin-like peptide. The results of these studies indicate that the anatomical and histochemical organization of the mudpuppy cardiac ganglion is more complex than that seen in other amphibians and is very similar to that found in most mammalian species. Previously, we showed that galanin has actions that make it of interest as a potential inhibitory neurotransmitter in the mudpuppy cardiac ganglion. Galanin hyperpolarizes and decreases membrane excitability in most parasympathetic neurons. Here we show that galanin initiates membrane hyperpolarization by activating a voltage- and time-dependent potassium conductance. We also present the initial results of ongoing studies which indicate that calcitonin gene-related peptide can depolarize some of the parasympathetic neurons as well as evidence that serotonin initiates depolarization in many parasympathetic neurons. This serotonin-induced depolarization consists of an initial transient depolarization followed by a longer, more slowly developing depolarization. Action potential activity is stimulated during the initial period of depolarization, but depressed during the later, slow depolarization. The results of these electrophysiological experiments suggest that many of the bioactive substances that have been identified in the different cells and nerve fibers within the cardiac ganglion affect the excitability of the postganglionic neurons. In conclusion, we suggest that the results of the studies summarized in this review demonstrate that the cardiac ganglion in the mudpuppy is not simply a relay station. Rather, the cardiac ganglion has a complex organization and exhibits a diversity of physiological responses, indicating that it very likely is another site of integration for control of cardiac function.Key words: parasympathetic neurons, cardiac ganglion, neuropeptides, biogenic amines, galanin, serotonin.


Sign in / Sign up

Export Citation Format

Share Document