X-ray studies of nanostructured metals processed by severe plastic deformation

2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 339-344 ◽  
Author(s):  
A. R. Kilmametov ◽  
A. V. Khristoforov ◽  
G. Wilde ◽  
R. Z. Valiev

2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 339-344
Author(s):  
A. R. Kilmametov ◽  
A. V. Khristoforov ◽  
G. Wilde ◽  
R. Z. Valiev

2011 ◽  
Vol 683 ◽  
pp. 69-79 ◽  
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
Konstantin Ivanov

In this review the investigations of deformation process development are discussed which were carried out by tension and creep in the temperature range Т<0.4Tm (here Тm is the absolute melting point of material) for nanostructured metals produced by the methods of severe plastic deformation. The contribution of grain boundary sliding to the total deformation in the above temperature interval is also considered. An analysis is made of the effect of grain size and grain boundary state on the evolution of grain boundary sliding and cooperative grain boundary sliding in nanostructured metals.


2016 ◽  
Vol 685 ◽  
pp. 525-529
Author(s):  
Zhanna G. Kovalevskaya ◽  
Margarita A. Khimich ◽  
Andrey V. Belyakov ◽  
Ivan A. Shulepov

The changes of the phase composition, structure and physicomechanical properties of Ti‑40 mas % Nb after severe plastic deformation are investigated in this paper. By the methods of microstructural, X-ray diffraction analysis and scanning electron microscopy it is determined that phase and structural transformations occur simultaneously in the alloy after severe plastic deformation. The martensitic structure formed after tempering disappears. The inverse α'' → β transformation occurs. The structure consisting of oriented refined grains is formed. The alloy is hardened due to the cold working. The Young modulus is equal to 79 GPa and it is less than that of initial alloy and close to the value obtained after tempering. It is possible that Young modulus is reduced by additional annealing.


2006 ◽  
Vol 114 ◽  
pp. 337-344 ◽  
Author(s):  
Bogusława Adamczyk-Cieślak ◽  
Jaroslaw Mizera ◽  
Krzysztof Jan Kurzydlowski

The texture of Al – 0.7 wt. % Li alloy processed by two different methods of severe plastic deformation (SPD) has been investigated by X-ray diffraction, and analyzed in terms of the orientation distribution function (ODF). It was found that severe plastic deformation by both Equal Channel Angular extrusion (ECAE) and Hydrostatic Extrusion (HE) resulted in an ultrafine grained structure in an Al – 0.7 wt. % Li alloy. The microstructure, grain shape and size, of materials produced by SPD strongly depend on the technological parameters and methods applied. The texture of the investigated alloy differed because of the different modes of deformation. In the initial state the alloy exhibited a very strong texture consisting of {111} fibre component. A similar fibrous texture characteristic was also found after HE whereas after the ECAE the initial texture was completely changed.


2008 ◽  
Vol 584-586 ◽  
pp. 9-15 ◽  
Author(s):  
Tasha Reshetnikova ◽  
Milyausha R. Salakhova ◽  
Zarema A. Safargalina ◽  
Andrey V. Shcherbakov

This report presents main achievements of international R&D activities of the Institute of Physics of Advanced Materials of Ufa State Aviation Technical University (Ufa, Russia) with a special attention to the innovative potential of nanostructured metals and alloys produced by severe plastic deformation techniques. Several examples of the first promising applications of bulk nanostructured materials as well as potential competing technologies are considered and discussed.


Sign in / Sign up

Export Citation Format

Share Document