Zeitsuboptimale Einfachregelung linearer Abtastsysteme mit beschränkten Zustandsvariablen und beschränkter Stellgröße / Time suboptimal control of linear sampied data systems with bounded State variables and bounded actuating variable

1975 ◽  
Vol 23 (1-12) ◽  
Author(s):  
U. SCHREIBER
Robotica ◽  
2003 ◽  
Vol 21 (2) ◽  
pp. 153-161 ◽  
Author(s):  
S. Kilicaslan ◽  
Y. Ercan

A method for the time suboptimal control of an industrial manipulator that moves along a specified path while keeping its end-effector orientation unchanged is proposed. Nonlinear system equations that describe the manipulator motion are linearized at each time step along the path. A method which gives control inputs (joint angular velocities) for time suboptimal control of the manipulator is developed. In the formulation, joint angular velocity and acceleration limitations are also taken into consideration. A six degree of freedom elbow type manipulator is used in a case study to verify the method developed.


Author(s):  
Fernando Villegas ◽  
Rogelio Hecker ◽  
Miguel Peña

This work proposes a deterministic robust controller to improve tracking performance for a linear motor, taking into account the electrical dynamics imposed by a commercial current controller. The design is split in two parts by means of the backstepping technique, in which the first part corresponds to a typical deterministic robust controller, neglecting the electrical dynamics. In the second part, a second-order electrical dynamics is considered using a particular state transformation. There, the proposed control law is composed of a term to compensate the known part of the model and a robust control term to impose a bound on the effect of uncertainties on tracking error. Stability and boundedness results for the complete controller are given. To this effect, a general result on boundedness and stability of nonlinear systems with conditionally bounded state variables is derived first. Finally, experimental results for the complete controller show an improvement on tracking error of up to 31.7% when compared with the results from the typical controller that neglects the electrical dynamics.


Author(s):  
Jeffrey L. Anderson

An extension to standard ensemble Kalman filter algorithms that can improve performance for non-Gaussian prior distributions, non-Gaussian likelihoods, and bounded state variables is described. The algorithm exploits the capability of the rank histogram filter (RHF) to represent arbitrary prior distributions for observed variables. The rank histogram algorithm can be applied directly to state variables to produce posterior marginal ensembles without the need for regression that is part of standard ensemble filters. These marginals are used to adjust the marginals obtained from a standard ensemble filter that uses regression to update state variables. The final posterior ensemble is obtained by doing an ordered replacement of the posterior marginal ensemble values from a standard ensemble filter with the values obtained from the rank histogram method applied directly to state variables; the algorithm is referred to as the Marginal Adjustment Rank Histogram Filter (MARHF). Applications to idealized bivariate problems and low-order dynamical systems show that the MARHF can produce better results than standard ensemble methods for priors that are non-Gaussian. Like the original RHF, the MARHF can also make use of arbitrary non-Gaussian observation likelihoods. The MARHF also has advantages for problems with bounded state variables, for instance the concentration of an atmospheric tracer. Bounds can be automatically respected in the posterior ensembles. With an efficient implementation of the MARHF, the additional cost has better scaling than the standard RHF.


Author(s):  
L.C. Becker ◽  
T.A. Burton

SynopsisThis paper is concerned with the problem of showing uniform stability and equiasymptotic stability of thezero solution of functional differential equations with either finite or infinite delay. The investigations are based on Liapunov's direct method and attention is focused on those equations whose right-hand sides are unbounded for bounded state variables.


Sign in / Sign up

Export Citation Format

Share Document