The potential of subterranean microbes in facilitating actinide migration at the Grimsel Test Site and Waste Isolation Pilot Plant

2000 ◽  
Vol 88 (9-11) ◽  
Author(s):  
J. B. Gillow ◽  
M. Dunn ◽  
Arokiasamy J. Francis ◽  
D.A. Lucero ◽  
H. W. Papenguth

Microorganisms may affect the long-term stability and mobility of radionuclides disposed of in deep geological formations. Of particular concern is the association of radionuclides with subterranean microbial cells and their subsequent transport as biocolloids. We characterized the total microbial populations in two groundwater samples: one from the Culebra dolomite member of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP), NM, and the other from the granitic formation at the Grimsel Test Site (GTS), Switzerland. Culebra groundwater (ionic strength 2.8 M, pH 7) contained 1.51 ± 1.08 × 10

2014 ◽  
Vol 1665 ◽  
pp. 85-91 ◽  
Author(s):  
Josep M. Soler ◽  
Jiri Landa ◽  
Vaclava Havlova ◽  
Yukio Tachi ◽  
Takanori Ebina ◽  
...  

ABSTRACTMatrix diffusion is a key process for radionuclide retention in crystalline rocks. Within the LTD project (Long-Term Diffusion), an in-situ diffusion experiment in unaltered non-fractured granite was performed at the Grimsel Test Site (www.grimsel.com, Switzerland). The tracers included 3H as HTO, 22Na+, 134Cs+ and 131I- with stable I- as carrier.The dataset (except for 131I- because of complete decay) was analyzed with different diffusion-sorption models by different teams (NAGRA / IDAEA-CSIC, UJV-Rez, JAEA, Univ. Poitiers) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. A Borehole Disturbed Zone (BDZ), which was observed in the rock profile data for 22Na+ and 134Cs+, had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2 mm) was about the same magnitude as the mean grain size of the quartz and feldspar grains.De and α values for the different tracers in the BDZ are larger than the respective values in the bulk rock. Capacity factors in the bulk rock are largest for Cs+ (strong sorption) and smallest for 3H (no sorption). However, 3H seems to display large α values in the BDZ. This phenomenon will be investigated in more detail in a second test starting in 2013.


2009 ◽  
Vol 1193 ◽  
Author(s):  
Andrew James Martin ◽  
Ingo Blechschmidt

AbstractTwo recent ongoing major projects at the Grimsel Test Site (GTS) (www.grimsel.com) that were initiated to simulate the long-term behaviour of radionuclides in the repository near-field and the surrounding host rock are presented: the Colloid Formation and Migration (CFM) project, which focuses on colloid generation and migration from a bentonite source doped with radionuclides and the Long-Term Diffusion (LTD) project, which aims at in-situ verification and understanding of the processes that control the long-term diffusion of repository-relevant radionuclides. So far, the CFM project has principally involved: development and implementation of a state-of-the-art sealing concept to control hydraulic gradients in a shear zone to imitate repository-relevant conditions; extensive laboratory studies to examine bentonite erosion and colloid formation in a shear zone; and, development of models to estimate colloid formation and migration. The next stage will be to assess the behavior of bentonite colloids generated from a radionuclide spiked bentonite source-term emplaced into the controlled flow field of the shear zone. This will be coupled with further extensive laboratory studies in order to refine and evaluate the colloid models currently used in performance assessments. The LTD project consists of: a monopole diffusion experiment where weakly sorbing and non-sorbing radionuclides (3H, 22Na, 131I, 134Cs) have been circulating and diffusing into undisturbed rock matrix since June 2007; experiments to characterise pore space geometry, including determination of in-situ porosity with 14C doped MMA resin for comparison with laboratory derived data; a study of natural tracers to elucidate evidence of long-term diffusion processes; and, an investigation of the in-situ matrix diffusion paths in core material from earlier GTS experiments. Future experiments will focus on diffusion processes starting from a water-conducting feature under realistic boundary conditions.


2010 ◽  
Vol 1265 ◽  
Author(s):  
Jean-Francois Lucchini ◽  
Hnin Khaing ◽  
Donald T. Reed

AbstractWhen present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is present in significant quantities, with about 647 metric tons to be placed in the repository [1]. Therefore, the chemistry of uranium, and especially its solubility, needs to be determined under WIPP-relevant conditions.Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pCH+ values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first WIPP repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brine and a lack of amphotericity. At the expected pCH+ in the WIPP (˜ 9.5), measured uranium solubility approached 10-7 M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines, during the ongoing research program in actinide solubility under WIPP-relevant conditions.


2012 ◽  
Vol 1444 ◽  
Author(s):  
Jean-Francois Lucchini ◽  
Sally Ballard ◽  
Hnin Khaing

ABSTRACTIn the performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP), the solubility of uranium (VI) was conservatively set at 10-3 M for all expected WIPP conditions, including the potential and likely effects of carbonate complexation [1]. Under WIPP-relevant conditions, long-term experiments were performed to establish the uranium (VI) solubility limits in WIPP-simulated brine over a broad range of pCH+ values [7.5-12.5] and to evaluate the contribution of carbonate complexation and hydrolysis to uranium (VI) speciation. Data obtained in carbonate-free ERDA-6 brine, a simulated WIPP brine, were reported earlier [2]. In the absence of carbonate, uranium solubility approached 10-7 M at the expected pCH+ in the WIPP (~ 9.5). In the presence of a significant amount of carbonate (millimole levels), recent experimental results showed that uranium (VI) concentrations will not exceed 10-4M. This measured solubility limit is an order of magnitude lower than the uranium solubility value currently used in the WIPP PA [3]. A small effect of borate complexation was found in the pCH+ range [7.5-10]. At pCH+ ≥ 10, hydrolysis overwhelmed carbonate effects, and no amphoteric effect was observed.


2010 ◽  
Vol 34 (4) ◽  
pp. 7-36 ◽  
Author(s):  
Monica Duffy Toft

Since 1990, negotiated settlements have become the preferred means for settling civil wars. Historically, however, these types of settlements have proven largely ineffective: civil wars ended by negotiated settlement are more likely to recur than those ending in victory by one side or the other. A theoretical and statistical analysis of how civil wars end reveals that the type of ending influences the prospects for longer-term outcomes. An examination of all civil war endings since 1940 finds that rebel victories are more likely to secure the peace than are negotiated settlements. A statistical analysis of civil wars from 1940 to 2002 and the case of Uganda illustrate why rebel victories result in more stable outcomes. Expanding scholarly and policy analysis of civil war termination types beyond the current default of negotiated settlement to include victories provides a much larger set of cases and variables to draw upon to enhance understanding of the conditions most likely to support long-term stability, democracy, and prosperity.


Risk Analysis ◽  
1999 ◽  
Vol 19 (5) ◽  
pp. 1003-1016 ◽  
Author(s):  
Matthew K. Silva ◽  
Dale F. Rucker ◽  
Lokesh Chaturvedi

Sign in / Sign up

Export Citation Format

Share Document