Creating & Teaching with Simple Animation: Making Biology Instruction Come Alive

2015 ◽  
Vol 77 (6) ◽  
pp. 463-466 ◽  
Author(s):  
Mary K. B. Zanin

Over the years, many of my students have reported that they enjoy lectures that include short, simple animations. To keep students engaged, I have developed a small set of teaching animations using PowerPoint and Camtasia Studio software packages. A survey of students who learned four difficult topics with traditional written lessons and with these animations revealed that 80% of the students say that they learn better when animations are included. With such a majority reporting that cartoons engage them in learning, I wanted to share my simple method of creating them with the teaching community.

Author(s):  
Miwako Tsuji ◽  
William T. C. Kramer ◽  
Jean-Christophe Weill ◽  
Jean-Philippe Nominé ◽  
Mitsuhisa Sato

AbstractBecause of the increasing complexities of systems and applications, the performance of many traditional HPC benchmarks, such as HPL or HPCG, no longer correlates strongly with the actual performance of real applications. To address the discrepancy between simple benchmarks and real applications, and to better understand the application performance of systems, some metrics use a set of either real applications or mini applications. In particular, the Sustained System Performance (SSP) metric Kramer et al. (The NERSC sustained system performance (SSP) metric. Tech Rep LBNL-58868, 2005), which indicates the expected throughput of different applications executing with different datasets, is widely used. Whereas such a metric should lead to direct insights on the actual performance of real applications, sometimes more effort is necessary to port and evaluate complex applications. In this study, to obtain the approximate performance of SSP representing real applications, without running real applications, we propose a metric called the Simplified Sustained System Performance (SSSP) metric, which is computed based on several benchmark scores and their respective weighting factors, and we construct a method evaluating the SSSP metric of a system. The weighting factors are obtained by minimizing the gap between the SSP and SSSP scores based on a small set of reference systems. We evaluated the applicability of the SSSP method using eight systems and demonstrated that our proposed SSSP metrics produce appropriate performance projections of the SSP metrics of these systems, even when we adopted a simple method for computing the weighting factors. Additionally, the robustness of our SSSP metric was confirmed via computation of the weighting factors based on a smaller set of reference systems and computation of the SSSP metrics of other systems.


2020 ◽  
Author(s):  
Hortênsia Costa Barcelos ◽  
Mariana Recamonde Mendoza ◽  
Viviane Pereira Moreira

This work addresses the problem of identifying and fusing duplicate features in machine learning datasets. Our goal is to evaluate the hypothesis that fusing duplicate features can improve the predictive power of the data while reducing training time. We propose a simple method for duplicate detection and fusion based on a small set of features. An evaluation comparing the duplicate detection against a manually generated ground truth obtained F1 of 0.91. Then,the effects of fusion were measured on a mortality prediction test. The results were inferior to the ones obtained with the original dataset. Thus we concluded that the investigated hypothesis does not hold.


Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


Author(s):  
Dean A. Handley ◽  
Jack T. Alexander ◽  
Shu Chien

In situ preparation of cell cultures for ultrastructural investigations is a convenient method by which fixation, dehydration and embedment are carried out in the culture petri dish. The in situ method offers the advantage of preserving the native orientation of cell-cell interactions, junctional regions and overlapping configurations. In order to section after embedment, the petri dish is usually separated from the polymerized resin by either differential cryo-contraction or solvation in organic fluids. The remaining resin block must be re-embedded before sectioning. Although removal of the petri dish may not disrupt the native cellular geometry, it does sacrifice what is now recognized as an important characteristic of cell growth: cell-substratum molecular interactions. To preserve the topographic cell-substratum relationship, we developed a simple method of tapered rotary beveling to reduce the petri dish thickness to a dimension suitable for direct thin sectioning.


2010 ◽  
Vol 34 (8) ◽  
pp. S75-S75
Author(s):  
Weifeng Zhu ◽  
Zhuoqi Liu ◽  
Daya Luo ◽  
Xinyao Wu ◽  
Fusheng Wan

Sign in / Sign up

Export Citation Format

Share Document