scholarly journals PTP‐MEG2 regulates quantal size and fusion pore opening through two distinct structural bases and substrates

EMBO Reports ◽  
2021 ◽  
Author(s):  
Yun‐Fei Xu ◽  
Xu Chen ◽  
Zhao Yang ◽  
Peng Xiao ◽  
Chun‐Hua Liu ◽  
...  
2019 ◽  
Author(s):  
Yun-Fei Xu ◽  
Xu Chen ◽  
Zhao Yang ◽  
Peng Xiao ◽  
Chun-Hua Liu ◽  
...  

ABSTRACTTyrosine phosphorylation of secretion machinery proteins is a crucial regulatory mechanism for exocytosis. However, the participation of protein tyrosine phosphatases (PTPs) in different exocytosis stages has not been defined. Here we demonstrated that PTP-MEG2 controls multiple steps of catecholamine secretion. Biochemical and crystallographic analyses revealed key residues that the interactions between govern the PTP-MEG2 and NSF-pY83 site, specify PTP-MEG2 substrate selectivity and modulate the fusion of catecholamine-containing vesicles. Unexpectedly, delineation of PTP-MEG2 mutants along with the NSF binding interface revealed that PTP-MEG2 controls the fusion pore opening through non-NSF dependent mechanisms. Utilizing bioinformatics search and biochemical and electrochemical screening approaches, we discovered that PTP-MEG2 regulates the opening and extension of the fusion pore by dephosphorylating the DYNAMIN2-pY125 and MUNC18-1-pY145 site. Further structural and biochemical analysis confirmed the interaction of PTP-MEG2 with MUNC18-1-pY145 or DYNAMIN2-pY125 through a distinct structural basis compared with that of the NSF-pY83 site. Our studies extended mechanistic insights in complex exocytosis processes.HIGHLIGHTSPTP-MEG2 regulates multiple steps of exocytosis.A crystal structure of the PTP-MEG2/phosphor-NSF-pY83 segment was obtained.Functional delineation of the PTP-MEG2/NSF interface led to the discovery of new PTP-MEG2 substrates.PTP-MEG2 regulates fusion pore opening and extension through the DYNAMIN2-pY125 site and MUNC18-1 pY145 site.The distinct structural basis of the recognition of substrates by PTP-MEG2 allows selective inhibitor design.


2006 ◽  
Vol 570 (2) ◽  
pp. 295-307 ◽  
Author(s):  
Chih-Tien Wang ◽  
Jihong Bai ◽  
Payne Y. Chang ◽  
Edwin R. Chapman ◽  
Meyer B. Jackson

1996 ◽  
Vol 135 (1) ◽  
pp. 63-71 ◽  
Author(s):  
R Blumenthal ◽  
D P Sarkar ◽  
S Durell ◽  
D E Howard ◽  
S J Morris

We have monitored kinetics of fusion between cell pairs consisting of a single influenza hemaglutinin (HA)-expressing cell and a single erythrocyte (RBC) that had been labeled with both a fluorescent lipid (Dil) in the membrane and a fluorescent solute (calcein) in the aqueous space. Initial fusion pore opening between the RBC and HA-expressing cell produced a change in RBC membrane potential (delta psi) that was monitored by a decrease in Dil fluorescence. This event was followed by two distinct stages of fusion pore dilation: the flux of fluorescent lipid (phi L) and the flux of a large aqueous fluorescent dye (phi s). We have analyzed the kinetics of events that occur as a result of transitions between a fusion pore (FP) and a solute permissive fusion pore (FPs). Our data are consistent with a fusion pore comprising six HA trimers.


2008 ◽  
Vol 131 (5) ◽  
pp. 503-513 ◽  
Author(s):  
Subrata Biswas ◽  
Shu-Rong Yin ◽  
Paul S. Blank ◽  
Joshua Zimmerberg

Cholesterol-specific interactions that affect membrane fusion were tested for using insect cells; cells that have naturally low cholesterol levels (<4 mol %). Sf9 cells were engineered (HAS cells) to express the hemagglutinin (HA) of the influenza virus X-31 strain. Enrichment of HAS cells with cholesterol reduced the delay between triggering and lipid dye transfer between HAS cells and human red blood cells (RBC), indicating that cholesterol facilitates membrane lipid mixing prior to fusion pore opening. Increased cholesterol also increased aqueous content transfer between HAS cells and RBC over a broad range of HA expression levels, suggesting that cholesterol also favors fusion pore expansion. This interpretation was tested using both trans-cell dye diffusion and fusion pore conductivity measurements in cholesterol-enriched cells. The results of this study support the hypothesis that host cell cholesterol acts at two stages in membrane fusion: (1) early, prior to fusion pore opening, and (2) late, during fusion pore expansion.


2019 ◽  
Author(s):  
Zhenyong Wu ◽  
Nadiv Dharan ◽  
Sathish Thiyagarajan ◽  
Ben O’Shaughnessy ◽  
Erdem Karatekin

ABSTRACTAll membrane fusion reactions proceed through an initial fusion pore, including calcium-triggered vesicular release of neurotransmitters and hormones. Expansion of this small pore to release cargo molecules is energetically costly and regulated by cells, but the mechanisms are poorly understood. Here we show that the neuronal/exocytic calcium sensor Synaptotagmin-1 (Syt1) promotes expansion of fusion pores induced by SNARE proteins, beyond its established role in coupling calcium influx to fusion pore opening. Our results suggest that fusion pore dilation by Syt1 requires interactions with SNAREs, PI(4,5)P2, and calcium. Pore opening was abolished by a mutation of the tandem C2 domain (C2AB) hydrophobic loops of Syt1, suggesting that their calcium-induced insertion into the membrane is required for pore opening. We propose that loop insertion is also required for pore expansion, but through a distinct mechanism. Mathematical modelling suggests that membrane insertion re-orients the C2 domains bound to the SNARE complex, rotating the SNARE complex so as to exert force on the membranes in a mechanical lever action that increases the intermembrane distance. The increased membrane separation provokes pore dilation to offset a bending energy penalty. We conclude that Syt1 assumes a critical role in calcium-dependent fusion pore dilation during neurotransmitter and hormone release.SIGNIFICANCE STATEMENTMembrane fusion is a fundamental biological process, required for development, infection by enveloped viruses, fertilization, intracellular trafficking, and calcium-triggered release of neurotransmitters and hormones when cargo-laden vesicles fuse with the plasma membrane. All membrane fusion reactions proceed through an initial, nanometer-sized fusion pore which can flicker open-closed multiple times before expanding or resealing. Pore expansion is required for efficient cargo release, but underlying mechanisms are poorly understood. Using a combination of single-pore measurements and quantitative modeling, we suggest that a complex between the neuronal calcium sensor Synaptotagmin-1 and the SNARE proteins together act as a calcium-sensitive mechanical lever to force the membranes apart and enlarge the pore.


2009 ◽  
Vol 96 (3) ◽  
pp. 101a-102a
Author(s):  
Qinghua Fang ◽  
Ying Zhao ◽  
Khajak Berberian ◽  
Joan S. Lenz ◽  
Manfred Lindau

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Ying Lai ◽  
Xiaochu Lou ◽  
Jiajie Diao ◽  
Yeon-Kyun Shin

2008 ◽  
Vol 105 (40) ◽  
pp. 15388-15392 ◽  
Author(s):  
Qinghua Fang ◽  
Khajak Berberian ◽  
Liang-Wei Gong ◽  
Ismail Hafez ◽  
Jakob B. Sørensen ◽  
...  

Formation of a fusion pore between a vesicle and its target membrane is thought to involve the so-called SNARE protein complex. However, there is no mechanistic model explaining how the fusion pore is opened by conformational changes in the SNARE complex. It has been suggested that C-terminal zipping triggers fusion pore opening. A SNAP-25 mutant named SNAP-25Δ9 (lacking the last nine C-terminal residues) should lead to a less-tight C-terminal zipping. Single exocytotic events in chromaffin cells expressing this mutant were characterized by carbon fiber amperometry and cell-attached patch capacitance measurements. Cells expressing SNAP-25Δ9 displayed smaller amperometric “foot-current” currents, reduced fusion pore conductances, and lower fusion pore expansion rates. We propose that SNARE/lipid complexes form proteolipid fusion pores. Fusion pores involving the SNAP-25Δ9 mutant will be less tightly zipped and may lead to a longer fusion pore structure, consistent with the observed decrease of fusion pore conductance.


Sign in / Sign up

Export Citation Format

Share Document