scholarly journals Mode I stress intensity factors of sickle-shaped surface cracks in round solid bars under bending moment

Author(s):  
Al Emran Ismail ◽  
2011 ◽  
Vol 214 ◽  
pp. 192-196 ◽  
Author(s):  
Al Emran Ismail ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Ruslizam Daud

This study presents a numerical investigation on the stress intensity factors (SIF), K of surface cracks in round bars that were obtained under pure torsion loadings or mode III. ANSYS finite element analysis (FEA) was used to determine the SIFs along the crack front of surface cracks embedded in the solid circular bars. 20-node isoparametric singular elements were used around the crack tip by shifting the mid-side node ¼-position close to a crack tip. Different crack aspect ratio, a/b were used ranging between 0.0 to 1.2 and relative crack depth, a/D were ranged between 0.1 to 0.6. Mode I SIF, KI obtained under bending moment was used to validate the proposed model and it was assumed this proposed model validated for analyzing mode III problems. It was found that, the mode II SIF, FII and mode III SIF, FIII were dependent on the crack geometries and the sites of crack growth were also dependent on a/b and a/D.


1998 ◽  
Vol 120 (6) ◽  
pp. 778-783 ◽  
Author(s):  
A. W. Eberhardt ◽  
B. S. Kim

Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In the present study, stress intensity factors, KI, and KII, were calculated for a surface crack in a polyethylene-CoCr-bone system in the presence of rolling or sliding contact pressures. Variations in crack length and load location were studied to determine probable crack propagation mechanisms and modes. The crack tip experienced a wide range of mixed-mode conditions that varied as a function of crack length, load location, and sliding friction. Positive KI values were observed for shorter cracks in rolling contact and for all crack lengths when the sliding load moved away from the crack. KII was greatest when the load was directly adjacent to the crack (g/a = ±1), where coincidental Mode I stresses were predominantly compressive. Sliding friction substantially increased both KImax and KIImax. The effective Mode I stress intensity factors, Keff, were greatest at g/a = ±1, illustrating the significance of high shear stresses generated by loads adjacent to surface cracks. Keff trends suggest mechanisms for surface pitting by which surface cracks propagate along their original plane under repeated reciprocating rolling or sliding, and turn in the direction of sliding under unidirectional sliding contact.


Sign in / Sign up

Export Citation Format

Share Document