scholarly journals A New Neuron Ion Channel Model with Noisy Input Current

Author(s):  
Ahmed Mahmood Khudhur ◽  
Ahmed N Abdalla

The data processing fundamental problem affects all aspects of nervous-system function by the noise of ion channels. The conducting and non conducting of ion channels depends on random transitions of channel noise, which affect the states of several numbers of gates in every single individual ion channel. This paper, introduce a new ion channel model in the neuron with noisy input current as approximations of the HH model. It briefly introduces the ion channel based on stochastic Hodgkin-Huxley model. The method is able to fully constrain the HH model and obtain all models capable of reproducing the data. Therefore, this method overcomes the limitations of other parameter estimation methods. The stochastic Markov process method is simply applied to simulate each gate individually to determine the relationship between channel noise and the spike frequency.

2021 ◽  
Vol 1999 (1) ◽  
pp. 012127
Author(s):  
Ahmed Mahmood Khudhur ◽  
Ahmed M Shano ◽  
Abdul Salam Hassan Abbas

2011 ◽  
Vol 9 (4) ◽  
pp. 1056-1070 ◽  
Author(s):  
Zhenli Xu ◽  
Wei Cai ◽  
Xiaolin Cheng

AbstractA multiple-image method is proposed to approximate the reaction-field potential of a source charge inside a finite length cylinder due to the electric polarization of the surrounding membrane and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat the channel/membrane interface boundary conditions of the electric potential, an optimization approach is used to derive image charges by fitting the reaction-field potential expressed in terms of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one in a homogeneous free space embedded with discrete charges (the source charge and image charges). The accuracy of this method is then validated numerically in calculating the solvation self-energy of a point charge.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 38-38
Author(s):  
M Weckström

In dim light, photoreceptor cells and subsequent neural elements typically show high absolute sensitivity, implying that both phototransduction and synaptic transmission work at a high gain and even a single photon may produce a large electrical response. However, when there is more light, rapid adaptation at several levels of signal processing ensures that the information channel is not congested, but optimally filled with relevant voltage responses. All this is achieved by carefully tuned mechanisms that include several types of ion channels in the cell membrane. These ion-channel mechanisms have been thoroughly investigated in a few species of invertebrates and vertebrates, and some general principles are being revealed. The membrane capacitance and the resistance of the cell together define the time constant of the membrane, thus the maximum speed for building up a voltage response to light. Both in vertebrate cones and in insect microvillar photoreceptors, phototransduction takes place in an enlarged part of the cell membrane, which implies a large capacitance. This can be counteracted by making the membrane more leaky by opening more ion channels. In insect photoreceptors several types of potassium channels have been identified that perform exactly this kind of function. The types of channels vary according to the required speed of phototransduction, ie depending on the life style of the animal. In diurnal dipteran insects the potassium channels are typically of the slowly inactivating type. This channel type regulates the cell impedance according to the depolarisation caused by light stimulation. In insects active in dim environments, the potassium channels found have been predominantly rapidly inactivating. The function of this type of channels is currently under debate. In vertebrate photoreceptors several potassium channel types, including channels sensitive to intracellular calcium and pH, are expressed in the inner segments and modulate photoresponses. Opening and closing of the potassium channels also generates neural noise and thus degrades the signal-to-noise ratio (SNR). However, if the gain of phototransduction is high enough, the dominant noise comes from photon fluctuations, or from the biochemical transduction machinery, or—in some situations—from spontaneous photon-like events. Channel noise is then insignificant by comparison. Thus the optimisation of the SNR is a trade-off between bandwidth (ie speed) and amplification of the signal, and here the voltage-gated potassium channels are of prime importance.


Peptides ◽  
1992 ◽  
pp. 171-173 ◽  
Author(s):  
I. L. Karle ◽  
J. L. Flippen-Anderson ◽  
S. Agarwalla ◽  
P. Balaram

Sign in / Sign up

Export Citation Format

Share Document