scholarly journals Nutrient dynamics and early decomposition rates of Picea abies needles in combination with Fagus orientalis leaf litter in an exogenous ecosystem

2015 ◽  
Vol 59 (1) ◽  
pp. 1
Author(s):  
Farhad Ghasemi-Aghbash ◽  
Vahid Hosseini ◽  
Morteza Poureza
2016 ◽  
Vol 6 (3) ◽  
pp. 106
Author(s):  
Amanda M. Nelson ◽  
Jon E. Schoonover ◽  
Karl W. J. Williard

<p class="1Body">Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of <em>Arundinaria gigantea </em>(Walt.) Muhl.<em> </em>in southern Illinois for the first time to determine potential nutrient cycling from riparian canebrake restoration. Leaf litter was collected from five established canebrakes monthly over one year and a decomposition study was conducted over 72 weeks. Live leaves, freshly senesced leaves, and decomposed leaves were analyzed for carbon (C) and N content. Leaf litterfall biomass peaked in November at twice the monthly average for all but one site, indicating a resemblance to deciduous leaf fall patterns. Nitrogen and C concentrations decreased 48% and 30%, respectively, between live leaves and 72 weeks following decomposition. High soil moisture appeared to slow decomposition rates, perhaps due to the creation of anaerobic conditions. Cane leaves have low resorption proficiency and nutrient-use proficiency, suggesting that these riparian canebrakes are not N limited. Giant cane should be considered in multispecies riparian buffer creation since it has this potential to supply carbon and nitrogen to the soil and to macroinvertebrates in the streams for a longer period of time and year round.</p>


2018 ◽  
Vol 27 (3) ◽  
pp. 549-558 ◽  
Author(s):  
Oscar Lanuza ◽  
Fernando Casanoves ◽  
Diego Delgado ◽  
Karel Van den Meersche

2021 ◽  
Author(s):  
Shanshan Song ◽  
Xiaokang Hu ◽  
Jiangling Zhu ◽  
Tianli Zheng ◽  
Fan Zhang ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 25
Author(s):  
David Candel-Pérez ◽  
J. Bosco Imbert ◽  
Maitane Unzu ◽  
Juan A. Blanco

The promotion of mixed forests represents an adaptation strategy in forest management to cope with climate change. The mixing of tree species with complementary ecological traits may modify forest functioning regarding productivity, stability, or resilience against disturbances. Litter decomposition is an important process for global carbon and nutrient cycles in terrestrial ecosystems, also affecting the functionality and sustainability of forests. Decomposition of mixed-leaf litters has become an active research area because it mimics the natural state of leaf litters in most forests. Thus, it is important to understand the factors controlling decomposition rates and nutrient cycles in mixed stands. In this study, we conducted a litter decomposition experiment in a Scots pine and European beech mixed forest in the province of Navarre (north of Spain). The effects of forest management (i.e., different thinning intensities), leaf litter types, and tree canopy on mass loss and chemical composition in such decomposing litter were analysed over a period of three years. Higher decomposition rates were observed in leaf litter mixtures, suggesting the existence of positive synergies between both pine and beech litter types. Moreover, a decomposition process was favoured under mixed-tree canopy patches. Regarding thinning treatments significant differences on decomposition rates disappeared at the end of the study period. Time influenced the nutrient concentration after the leaf litter incubation, with significant differences in the chemical composition between the different types of leaf litter. Higher Ca and Mg concentrations were found in beech litter types than in pine ones. An increase in certain nutrients throughout the decomposition process was observed due to immobilization by microorganisms (e.g., Mg in all leaf litter types, K only in beech leaves, P in thinned plots and under mixed canopy). Evaluating the overall response in mixed-leaf litters and the contribution of single species is necessary for understanding the litter decomposition and nutrient processes in mixed-forest ecosystems.


1998 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M Francesca Cotrufo ◽  
Björn Berg ◽  
Werner Kratz

There is evidence that N concentration in hardwood leaf litter is reduced when plants are raised in an elevated CO2 atmosphere. Reductions in the N concentration of leaf litter have been found for tree species raised under elevated CO2, with reduction in N concentration ranging from ca. 50% for sweet chestnut (Castanea sativa) to 19% for sycamore (Acer platanoides). However, the effects of elevated CO2 on the chemical composition of litter has been investigated only for a limited number of species. There is also little information on the effects of increased CO2 on the quality of root tissues. If we consider, for example, two important European forest ecosystem types, the dominant species investigated for chemical changes are just a few. Thus, there are whole terrestrial ecosystems in which not a single species has been investigated, meaning that the observed effects of a raised CO2 level on plant litter actually has a large error source. Few reports present data on the effects of elevated CO2 on litter nutrients other than N, which limits our ability to predict the effects of elevated CO2 on litter quality and thus on its decomposability. In litter decomposition three separate steps are seen: (i) the initial stages, (ii) the later stages, and (iii) the final stages. The concept of "substrate quality," translated into chemical composition, will thus change between early stages of decomposition and later ones, with a balanced proportion of nutrients (e.g., N, P, S) being required in the early decomposition phase. In the later stages decomposition rates are ruled by lignin degradation and that process is regulated by the availability of certain nutrients (e.g., N, Mn), which act as signals to the lignin-degrading soil microflora. In the final stages the decomposition comes to a stop or may reach an extremely low decomposition rate, so low that asymptotic decomposition values may be estimated and negatively related to N concentrations. Studies on the effects of changes in chemical composition on the decomposability of litter have mainly been made during the early decomposition stages and they generally report decreased litter quality (e.g., increased C/N ratio), resulting in lower decomposition rates for litter raised under elevated CO2 as compared with control litter. No reports are found relating chemical changes induced by elevated CO2 to litter mass-loss rates in late stages. By most definitions, at these stages litter has turned into humus, and many studies demonstrated that a raising of the N level may suppress humus decomposition rate. It is thus reasonable to speculate that a decrease in N levels in humus would accelerate decomposition and allow it to proceed further. There are no experimental data on the long-term effect of elevated CO2 levels, and a decrease in the storage of humus and nutrients could be predicted, at least in temperate and boreal forest systems. Future works on the effects of elevated CO2 on litter quality need to include studies of a larger number of nutrients and chemical components, and to cover different stages of decomposition. Additionally, the response of plant litter quality to elevated CO2 needs to be investigated under field conditions and at the community level, where possible shifts in community composition (i.e., C3 versus C4 ; N2 fixers versus nonfixers) predicted under elevated CO2 are taken into account.Key words: climate change, substrate quality, carbon dioxide, plant litter, chemical composition, decomposition.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ellen C. Kadeka ◽  
Frank O. Masese ◽  
David M. Lusega ◽  
Augustine Sitati ◽  
Benjamin N. Kondowe ◽  
...  

Expansion of agriculture is particularly worrying in tropical regions of the world, where native forests have been replaced by croplands and grasslands, with severe consequences for biodiversity conservation and ecosystem functioning. However, limited data exist on the effects of agriculture on the functioning of tropical streams. We conducted a leaf litter decomposition experiment in coarse- and fine-mesh litterbags using the three species of leaves (Eucalyptus globulus [non-native], Vernonia myriantha, and Syzygium cordatum [indigenous]) in three forested and agricultural streams to determine the effect of agriculture on instream leaf litter decomposition in headwater stream sites. We also examined the functional composition of macroinvertebrates in the streams through the contents of benthic kick samples. Agricultural streams had a less dense riparian canopy and smaller abundance of coarse organic particulate matter, and higher electric conductivity and suspended solids than forested streams. In terms of the effects of litter quality on decomposition rates, Vernonia had the fastest decomposition rates while Eucalyptus had the slowest in both forested and agricultural sites. Shredder invertebrates were less abundant in agricultural streams, and in both stream types, they were less diverse and abundant than other functional groups. Overall, leaf litter decomposition rates did not respond to agricultural land-use. The hypothesized negative effects of agriculture on organic matter processing were minimal and likely modulated by intact riparian zones along agricultural streams.


Sign in / Sign up

Export Citation Format

Share Document