scholarly journals Nutrient Dynamics and Decomposition of Riparian Arundinaria gigantea (Walt.) Muhl. Leaves in Southern Illinois

2016 ◽  
Vol 6 (3) ◽  
pp. 106
Author(s):  
Amanda M. Nelson ◽  
Jon E. Schoonover ◽  
Karl W. J. Williard

<p class="1Body">Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of <em>Arundinaria gigantea </em>(Walt.) Muhl.<em> </em>in southern Illinois for the first time to determine potential nutrient cycling from riparian canebrake restoration. Leaf litter was collected from five established canebrakes monthly over one year and a decomposition study was conducted over 72 weeks. Live leaves, freshly senesced leaves, and decomposed leaves were analyzed for carbon (C) and N content. Leaf litterfall biomass peaked in November at twice the monthly average for all but one site, indicating a resemblance to deciduous leaf fall patterns. Nitrogen and C concentrations decreased 48% and 30%, respectively, between live leaves and 72 weeks following decomposition. High soil moisture appeared to slow decomposition rates, perhaps due to the creation of anaerobic conditions. Cane leaves have low resorption proficiency and nutrient-use proficiency, suggesting that these riparian canebrakes are not N limited. Giant cane should be considered in multispecies riparian buffer creation since it has this potential to supply carbon and nitrogen to the soil and to macroinvertebrates in the streams for a longer period of time and year round.</p>

Castanea ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. 286-299 ◽  
Author(s):  
J. J. Zaczek ◽  
S. G. Baer ◽  
J. L. Hartleb ◽  
W. W. Brendecke ◽  
J. E. Schoonover ◽  
...  

2018 ◽  
Vol 8 (3) ◽  
pp. 25
Author(s):  
Mary E. Ngaiwi ◽  
Ernest L. Molua ◽  
Andrew E. Egbe

Understanding litterfall and macronutrients in the rainforest ecosystem gives baseline information on nutrient dynamics. Litterfall and macronutrients return were studied for 12 months from November 2011 to October 2012 in a 50 ha plot in the Takamanda National Park, South-western Cameroon. This study evaluates the pattern and quantity of litterfall, with implications for forest productivity. It thus assesses the macronutrient concentrations, nutrient inputs into the surface soil, nutrient retranslocation by some key tree species and some physicochemical properties of the soil in the study site. Litter traps where placed randomly in the study plot. Litter was collected every fortnight sorted and air-dried after which they were oven dried at 70°C to constant weight. Soils were sampled from three flanks at depths of 0-10cm, 10-20cm and 20-30cm. Percentage retranslocation or accumulation before leaf fall was calculated from freshly fallen litter and mature green leaf. Total annual litterfall was 5.46 t/ha/yr and this varied with the seasons. Leaf litter contributed 90.9% of total litterfall. The concentration of N and Ca was higher than other nutrient elements Mg, K, P in all litter fragments. Nitrogen had the highest total nutrient input with the following pattern N&gt;Ca&gt;K&gt;Mg&gt;P (85.36 kg/ha/yr&gt; 56.71 kg/ha/yr&gt; 23.1 kg/ha/yr&gt; 17.32 kg/ha/yr&gt; 4.27 kg/ha/yr) respectively.Pterocarpus soyauxii had the highest retranslocation percentages for all the macronutrients studied compared to Afziliabipidensis and Terminalia ivorensis. It was observed that Terminalia ivorensis could be a good nutrient recycler that could be used to improve on degraded soils. It was however observed that Ca and Mg tend to accumulate in leaf litter for all the three species.


2018 ◽  
Vol 27 (3) ◽  
pp. 549-558 ◽  
Author(s):  
Oscar Lanuza ◽  
Fernando Casanoves ◽  
Diego Delgado ◽  
Karel Van den Meersche

2021 ◽  
Author(s):  
Shanshan Song ◽  
Xiaokang Hu ◽  
Jiangling Zhu ◽  
Tianli Zheng ◽  
Fan Zhang ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 25
Author(s):  
David Candel-Pérez ◽  
J. Bosco Imbert ◽  
Maitane Unzu ◽  
Juan A. Blanco

The promotion of mixed forests represents an adaptation strategy in forest management to cope with climate change. The mixing of tree species with complementary ecological traits may modify forest functioning regarding productivity, stability, or resilience against disturbances. Litter decomposition is an important process for global carbon and nutrient cycles in terrestrial ecosystems, also affecting the functionality and sustainability of forests. Decomposition of mixed-leaf litters has become an active research area because it mimics the natural state of leaf litters in most forests. Thus, it is important to understand the factors controlling decomposition rates and nutrient cycles in mixed stands. In this study, we conducted a litter decomposition experiment in a Scots pine and European beech mixed forest in the province of Navarre (north of Spain). The effects of forest management (i.e., different thinning intensities), leaf litter types, and tree canopy on mass loss and chemical composition in such decomposing litter were analysed over a period of three years. Higher decomposition rates were observed in leaf litter mixtures, suggesting the existence of positive synergies between both pine and beech litter types. Moreover, a decomposition process was favoured under mixed-tree canopy patches. Regarding thinning treatments significant differences on decomposition rates disappeared at the end of the study period. Time influenced the nutrient concentration after the leaf litter incubation, with significant differences in the chemical composition between the different types of leaf litter. Higher Ca and Mg concentrations were found in beech litter types than in pine ones. An increase in certain nutrients throughout the decomposition process was observed due to immobilization by microorganisms (e.g., Mg in all leaf litter types, K only in beech leaves, P in thinned plots and under mixed canopy). Evaluating the overall response in mixed-leaf litters and the contribution of single species is necessary for understanding the litter decomposition and nutrient processes in mixed-forest ecosystems.


2004 ◽  
Vol 96 (2) ◽  
pp. 525-530 ◽  
Author(s):  
K. R. Sistani ◽  
G. E. Brink ◽  
A. Adeli ◽  
H. Tewolde ◽  
D. E. Rowe

Sign in / Sign up

Export Citation Format

Share Document