Insulin-like growth factor I levels in proportionate dogs, chondrodystrophic dogs and in giant dogs

1988 ◽  
Vol 118 (1) ◽  
pp. 105-108 ◽  
Author(s):  
J. Eugen Eigenmann ◽  
Adel Amador ◽  
Donald F. Patterson

Abstract. Plasma insulin-like growth factor I concentrations from proportionate, chondrodystrophic and giant breeds were evaluated and compared with body size. IGF-I plasma concentrations were 91.2 ± 10.9 μg/l in Keeshounds (proportionate dog), 122.6 ± 25.4 μg/l in Bassethounds (chondrodystrophic dog) and 280 ± 22.8 μg/l in German Shepherds (proportionate dog). The highest IGF-I level (389.6 ± 24.2 μg/l) was found in the New Foundland, a giant breed (mean ± sem). The mean body weight was 11.8 ±0.4 kg in Keeshounds, 15.4 ± 1.4 kg in Bassethounds, 32 ± 1.5 kg in German Shepherds, and 45.6 ± 1.7 kg in New Foundlands (mean ± sem). Body weight and plasma IGF-I concentration were significantly correlated (y (IGF-I) = −7.43 + 8.7 × (body weight); P < 0.0001.

1990 ◽  
Vol 124 (1) ◽  
pp. 151-158 ◽  
Author(s):  
R. A. Siddiqui ◽  
H. T. Blair ◽  
S. N. McCutcheon ◽  
D. D. S. Mackenzie ◽  
P. D. Gluckman ◽  
...  

ABSTRACT A study was conducted to investigate developmental patterns of plasma concentrations of insulin-like growth factor-I (IGF-I), body growth and body composition in mice from lines selected for seven generations on the basis of low (L) or high (H) plasma IGF-I, and in a random-bred control (C) line. Litter size was standardized to eight individuals with equal sex ratios (as far as possible) within 48 h of birth. Pups were weaned at an average of 21 days and separated on the basis of sex. Blood samples were collected from one male and one female of each litter on days, 21, 42, 63 and 105 for analysis of plasma concentrations of IGF-I. The animals were then killed and analysed for water, fat and crude protein content. The plasma concentration of IGF-I was influenced by line (P<0·05) but not by sex. Significant (P< 0·001) differences in liveweight between mice from L and H lines were first evident at 21 days of age. From 28 until 105 days of age the H line was significantly (P< 0·001) heavier than both L and C lines, but differences between C and L lines were inconsistent and mostly non-significant. The growth velocity of the H line was significantly greater than that of C or L lines between 14 and 42 days of age, but differences in growth velocities of C compared with L lines were generally non-significant. Nose–anus length was significantly (P<0·01) affected by sex and line from 42 to 105 days of age, but anus–tail length was not affected by sex or line at any age. Effects of sex and line on empty (digesta-free) body weight and wet weights of carcass and skin plus viscera fractions followed a pattern similar to those of liveweights. The effects of sex and line on protein, water and fat content also paralleled their effects on body size. Differences between males and females, and between the lines, in amount of protein, water and fat could be entirely accounted for by the corresponding differences in body weight. It is concluded from these results that divergent selection on the basis of plasma IGF-I at 42 days of age resulted in lines of animals differing in plasma IGF-I from 21 days of age until maturity. These divergent concentrations of IGF-I are associated with differences between the lines in body growth, particularly during the period of accelerated growth at puberty, but not with changes in body composition. Journal of Endocrinology (1990) 124, 151–158


1991 ◽  
Vol 128 (2) ◽  
pp. 181-186 ◽  
Author(s):  
J. J. Bass ◽  
J. M. Oldham ◽  
S. C. Hodgkinson ◽  
P. J. Fowke ◽  
H. Sauerwein ◽  
...  

ABSTRACT The effect on young lambs of 0·25 mg recombinant bovine GH (bGH)/kg per day on plasma concentrations of insulin-like growth factor-I (IGF-I), glucose, specific hepatic GH binding and body composition changes was examined at two levels of nutrition (lucerne pellets; 3 and 1·7% of body weight/day). Lambs on low levels of nutrition had low plasma IGF-I (P < 0·001). Plasma concentrations of IGF-I were increased by bGH treatment at both levels of nutrition, with the high nutrition group showing the greatest IGF-I response after 3 and 40 days of bGH treatment. Plasma glucose, after 40 days, was higher overall (P < 0·05) in lambs on high nutrition. bGH treatment increased plasma glucose, with the response being greater in the well-fed lambs. Specific binding of GH to liver membranes was highest in lambs on high nutrition and on bGH treatment; no significant interaction between nutrition and bGH treatment was detected, indicating that specific binding of GH was increased proportionally by bGH at both nutritional levels. The major change in body composition was the reduced level of fatness in lambs treated with bGH. There was no significant effect of bGH on body weight although bGH treatment tended to increase weight gain of well-fed lambs and decreased weight loss of poorly nourished lambs. The results show that, although there was a significant (P < 0·05) bGH/nutrition interaction for IGF-I there was no such interaction for body weight/components or specific GH binding to the liver. The results indicate that an increase in plasma IGF-I does not necessarily result in increases in growth or changes in carcass composition. Journal of Endocrinology (1991) 128, 181–186


1991 ◽  
Vol 128 (2) ◽  
pp. 197-204 ◽  
Author(s):  
F. J. Ballard ◽  
S. E. Knowles ◽  
P. E. Walton ◽  
K. Edson ◽  
P. C. Owens ◽  
...  

ABSTRACT Incubation of 125I-labelled insulin-like growth factor-I (IGF-I) with rat plasma at 4 °C led to the transfer of approximately half the radioactivity to 150 kDa and smaller complexes with IGF-binding proteins. The extent of association was greater with labelled IGF-II and essentially absent with the truncated IGF-I analogue, des(1–3)IGF-I. A greater degree of binding of IGF peptides with binding proteins occurred after i.v. injection of the tracers into rats, but most of the des(1–3)IGF-I radioactivity remained free. Measurement of the total plasma clearances showed the rapid removal of des(1–3)IGF-I compared with IGF-I and IGF-II; the mean clearances were 4·59, 1·20 and 1·34 ml/min per kg respectively. The mean steadystate volume of distribution was larger for des(1–3)IGF-I than for IGF-I and IGF-II (461, 167 and 181 ml/kg respectively), probably because of the differences in plasma protein binding. With all tracers, radioactivity appeared in the kidneys to a greater extent than in other organs. The amount of radioactivity found in the adrenals, brain, skin, stomach, duodenum, ileum plus jejunum and colon was in rank order, des(1–3)IGF-I > IGF-I > IGF-II. Since this ranking is the opposite of the abilities of the three IGF peptides to form complexes with plasma binding proteins, we propose that the plasma binding proteins inhibit the transfer of the growth factors to their tissue sites of action. Moreover, we suggest that IGF analogues that are cleared rapidly from blood may have greater biological potencies in vivo. Journal of Endocrinology (1991) 128, 197–204


2002 ◽  
Vol 163 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Z.J. Champion ◽  
B.H. Breier ◽  
W.E. Ewen ◽  
T.T. Tobin ◽  
P.J. Casey

1991 ◽  
Vol 128 (1) ◽  
pp. 97-105 ◽  
Author(s):  
F. M. Tomas ◽  
S. E. Knowles ◽  
P. C. Owens ◽  
L. C. Read ◽  
C. S. Chandler ◽  
...  

ABSTRACT The ability of insulin-like growth factor-I (IGF-I) to protect against losses of body protein during periods of dietary nitrogen restriction has been evaluated in young rats. Recombinant human IGF-I was administered by osmotic pumps at dose rates of 0, 1·2 or 2·9 mg/kg per day over a 7-day period beginning with the transfer of animals from an 18% to a 4% protein diet. A fourth group received the potent truncated IGF-I analogue, des(1–3)IGF-I, at a dose of 1·2 mg/kg per day over a comparable 7-day period. Plasma IGF-I levels were reduced by 60% following nitrogen restriction, a reduction that was partly prevented by IGF-I administration, especially at the higher dose, but not measurably by des(1–3)IGF-I. The major IGF-binding protein circulating in blood, IGFBP-3, demonstrated a similar pattern of change. A significant (P<0·05) protection of body weight was achieved in the low dose IGF-I and des(1–3)IGF-I groups, but only after differences in food intake had been eliminated by analysis of covariance. Nitrogen balances were not significantly different unless analysis of covariance was used to adjust for the nitrogen intakes, whereupon all treatment groups showed improved balance, especially the animals treated with the low IGF-I dose and des(1–3)IGF-I (both P<0·01). The rate of muscle protein breakdown calculated from the urinary excretion of 3-methylhistidine was not significantly altered by the treatments, but fell progressively throughout the 7 days. The fractional rate of muscle protein synthesis measured on the final day was increased by 31, 26 and 21% respectively by the low and high doses of IGF-I and by des(1–3)IGF-I. Organ weights (g/kg body weight) showed no effects of IGF-I treatment except for 16% increases in the weight of kidneys in the high dose IGF-I and the des(1–3)IGF-I groups. Carcass analyses demonstrated higher water and lower fat contents (all P< 0·01) in the same groups. These results suggest that exogenous IGF-I and especially des(1–3)IGF-I can partly protect body protein reserves during nitrogen restriction. Journal of Endocrinology (1991) 128, 97–105


1988 ◽  
Vol 119 (3) ◽  
pp. 333-338 ◽  
Author(s):  
A. Silbergeld ◽  
L. Jaber ◽  
P. Lilos ◽  
Z. Laron

Abstract. Insulin-like growth factor I levels were measured in a parallel fashion in 77 extracted sera using the INCSTAR RIA (radioimmunoassay) and in the EDTA plasma of the same subjects by the NICHOLS RIA. The subjects suffered from untreated hGH deficiency, short stature, delayed and precocious puberty and acromegaly. Significant differences (P < 0.05) were found between the mean IGF-I levels of all groups using both RIA systems. However, using the INCSTAR RIA, 85% of IGF-I values in untreated hGH deficiency were below normal, and a rise in IGF-I detected in the sera of all 5 patients who were treated with hGH. Using NICHOLS RIA, 55% of basal IGF-I values were below normal and a hGH-stimulated rise in IGF-I was found in only two of the treated patients. The INCSTAR RIA seems more precise and reproducible than the NICHOLS RIA and enables better discrimination of hGH-deficient patients from age-matched controls.


2006 ◽  
Vol 105 (6) ◽  
pp. 843-852 ◽  
Author(s):  
Jimmi Hatton ◽  
Richard Kryscio ◽  
Melody Ryan ◽  
Linda Ott ◽  
Byron Young

Object Hypermetabolism, hypercatabolism, refractory nitrogen wasting, hyperglycemia, and immunosuppression accompany traumatic brain injury (TBI). Pituitary dysfunction occurs, affecting growth hormone (GH) and plasma insulin-like growth factor–I (IGF-I) concentrations. The authors evaluated whether combination IGF-I/GH therapy improved metabolic and nutritional parameters after moderate to severe TBI. Methods The authors conducted a prospective, randomized, double-blind study comparing combination IGF-I/GH therapy and a placebo treatment. Ninety-seven patients with TBI were enrolled in the study within 72 hours of injury and were assigned to receive either combination IGF-I/GH therapy or placebo. All patients received concomitant nutritional support. Insulin-like growth factor–I was administered by continuous intravenous infusion (0.01 mg/kg/hr), and GH (0.05 mg/kg/day) was administered subcutaneously. Placebo control group patients received normal saline solution in place of both agents. Nutritional and metabolic monitoring continued throughout the 14-day treatment period. The two groups did not differ in energy expenditure, nutrient intake, or use of insulin treatment. The mean daily serum glucose concentration was higher in the treatment group (123 ± 24 mg/dl) than in the control group (104 ± 11 mg/dl) (p < 0.03). A positive nitrogen balance was achieved within the first 24 hours in the treatment group and remained positive in that group throughout the treatment period (p < 0.05). This pattern was not observed in the control group. Plasma IGF-I concentrations were above 350 ng/ml in the treatment group throughout the study period. Overall, the mean plasma IGF-I concentrations were 1003 ± 480.6 ng/ml in the treatment group and 192 ± 46.2 ng/ml in the control group (p < 0.01). Conclusions The combination of IGF-I and GH produced sustained improvement in metabolic and nutritional endpoints after moderate to severe acute TBI.


Sign in / Sign up

Export Citation Format

Share Document