scholarly journals Frequent SLC12A3 mutations in Chinese Gitelman syndrome patients: structure and function disorder

2021 ◽  
Author(s):  
Lanping Jiang ◽  
Xiaoyan Peng ◽  
Bingbin Zhao ◽  
Lei Zhang ◽  
Lubin Xu ◽  
...  

Purposes: This study was conducted to identify the frequent mutations from reported Chinese Gitelman syndrome (GS) patients, to predict three-dimensional structure change of human Na-Cl co-transporter (hNCC), and to test the activity of these mutations and some novel mutations in vitro and in vivo. Methods: SLC12A3 gene mutations in Chinese GS patients previously reported in the PubMed, CNKI and Wanfang database were summarized. Predicted configurations of wild type (WT) and mutant proteins were achieved using the I-TASSER workplace. Six missense mutations (T60M, L215F, D486N, N534K, Q617R and R928C) were generated by site-directed mutagenesis. 22Na+ uptake experiment was carried out in the Xenopus laevis oocyte expression system. 35 GS patients and 20 healthy volunteers underwent the thiazide test. Results: T60M, T163M,D486N, R913Q, R928C and R959 frameshift were frequent SLC12A3 gene mutations (mutated frequency >3%) in 310 Chinese GS families. The protein’s three-dimensional structure was predicted to be altered in all mutations. Compared with WT hNCC, the thiazide-sensitive 22Na+ uptake was significantly diminished for all 6 mutations: T60M 22±9.2%, R928C 29±12%, L215F 38±14%, N534K 41±15.5%, Q617R 63±22.1% and D486N 77±20.4%. In thiazide test, the net increase in chloride fractional excretion in 20 healthy controls was significantly higher than GS patients with or without T60M or D486N mutations. Conclusions: Frequent mutations (T60M, D486N, R928C) and novel mutations (L215F, N534K and Q617R) lead to protein structure alternation and protein dysfunction verified by 22Na+ uptake experiment in vitro and thiazide test on patients.

2014 ◽  
Vol 170 (5) ◽  
pp. 697-706 ◽  
Author(s):  
Seher Polat ◽  
Alexandra Kulle ◽  
Züleyha Karaca ◽  
Ilker Akkurt ◽  
Selim Kurtoglu ◽  
...  

BackgroundCongenital adrenal hyperplasia (CAH) is one of the most common autosomal recessive inherited endocrine diseases. Steroid 11β-hydroxylase (P450c11) deficiency (11OHD) is the second most common form of CAH.AimThe aim of the study was to study the functional consequences of three novelCYP11B1gene mutations (p.His125Thrfs*8, p.Leu463_Leu464dup and p.Ser150Leu) detected in patients suffering from 11OHD and to correlate this data with the clinical phenotype.MethodsFunctional analyses were done by using a HEK293 cellin vitroexpression system comparing WT with mutant P450c11 activity. Mutant proteins were examinedin silicoto study their effect on the three-dimensional structure of the protein.ResultsTwo mutations (p.His125Thrfs*8 and p.Leu463_Leu464dup) detected in patients with classic 11OHD showed a complete loss of P450c11 activity. The mutation (p.Ser150Leu) detected in a patient with non-classic 11OHD showed partial functional impairment with 19% of WT activity.ConclusionFunctional mutation analysis enables the correlation of novelCYP11B1mutations to the classic and non-classic 11OHD phenotype respectively. Mutations causing a non-classic phenotype show typically partial impairment due to reduced maximum reaction velocity comparable with non-classic mutations in 21-hydroxylase deficiency. The increasing number of mutations associated with non-classic 11OHD illustrate that this disease should be considered as diagnosis in patients with otherwise unexplained hyperandrogenism.


2012 ◽  
Vol 5 (4) ◽  
pp. 312-315 ◽  
Author(s):  
Toyoaki Ohbuchi ◽  
Miyako Takaki ◽  
Hiromi Misawa ◽  
Hideaki Suzuki ◽  
Yoichi Ueta

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Bin Li ◽  
Bin Lu ◽  
Xuewen Guo ◽  
Shenghui Hu ◽  
Guihu Zhao ◽  
...  

Purpose. To screen out pathogenic genes in a Chinese family with congenital cataract and iris coloboma. Material and Methods. A three-generation family with congenital cataract and iris coloboma from a Han ethnicity was recruited. DNA was extracted from peripheral blood samples collected from all individuals in the family. Whole exon sequencing was employed for screening the disease-causing gene mutations in the proband, and Sanger sequencing was used for other members of the family and a control group of 500 healthy individuals. Bioinformatics analysis and three-dimensional structure predictions were used to predict the impact of amino acid changes on protein structure and function. Results. The candidate genes of cataract and iris coloboma were successfully screened out. A heterozygote mutation, CRYGD c.70C>A (p.P24T), was identified as cosegregating with congenital cataracts, while another heterozygous mutation, WFS1 c.1514G>C (p.C505S), which had not been reported previously, cosegregated with congenital iris coloboma. Bioinformatic analyses and three-dimensional structure prediction proved that the three-dimensional structures of WFS1 p.C505S and CRYGD p.P24T changed markedly and may contribute significantly to iris coloboma and congenital cataract, respectively. Conclusions. We report a novel mutation, WFS1 p.C505S, and a known mutation, CRYGD p.P24T, that cosegregate with iris coloboma and congenital cataract, respectively, in a Chinese family. This is the first time the association of WFS1 p.C505S with iris coloboma has been demonstrated, although CRYGD p.P24T has been widely reported as being associated with congenital cataract, especially in the Eastern Asian population. These findings may have future therapeutic benefit for the diagnosis of iris coloboma and congenital cataract. The results may also be relevant in further studies aiming to investigate the molecular pathogenesis of iris coloboma and congenital cataract.


2003 ◽  
Vol 12 (5) ◽  
pp. 491-498 ◽  
Author(s):  
Hideki Nonaka ◽  
Hirohiko Ise ◽  
Nobuhiro Sugihara ◽  
Shinichi Hirose ◽  
Naoki Negishi ◽  
...  

It is difficult to a produce highly functional bioartificial liver (BAL) using only hepatocytes, because it is believed that liver-specific three-dimensional structure is necessary to maintain high function for BAL. But it is difficult to construct a culture system with liver-specific three-dimensional structure in vitro. To realize a highly functional culture system with liver-specific three-dimensional structure, we developed a culture system using liver slices that keep liver-specific architecture, such as liver lobule and hepatic microvascular system. Liver slices were embedded in agarose gel to maintain them under a moist and three-dimensional environment. We examined the viability and function of liver slices by using various shapes of agarose gel. Liver slices were cultured 1) under stationary condition (control), 2) directly embedded in gel, and 3) embedded in cylindrical gel for good drainage of medium and ventilation of air. The viability and function of the incubated liver slices were evaluated by LDH leakage, histomorphology, and immunohistochemistry. At 10 days, the morphological condition and function of liver slices embedded in cylindrical gel were maintained better than liver slices directly embedded in gel or in the stationary condition. We suggest that high functionality and morphological condition of liver slices could be maintained by embedding in cylindrical gel. In the future, it is possible that this method could be used to develop a highly functional bioartificial liver.


Chromosoma ◽  
2007 ◽  
Vol 116 (4) ◽  
pp. 349-372 ◽  
Author(s):  
Peter König ◽  
Michael B. Braunfeld ◽  
John W. Sedat ◽  
David A. Agard

Peptides ◽  
2021 ◽  
Vol 137 ◽  
pp. 170478
Author(s):  
Alessandra Daniele-Silva ◽  
Suedson de Carvalho Silva Rodrigues ◽  
Elizabeth Cristina Gomes dos Santos ◽  
Moacir Fernandes de Queiroz Neto ◽  
Hugo Alexandre de Oliveira Rocha ◽  
...  

2020 ◽  
Author(s):  
Xia Gao ◽  
Lingna Shi ◽  
Xin Liao ◽  
Qing Du ◽  
Haiyan Zhao ◽  
...  

Abstract Methods A whole-exome sequencing end stage renal disease patient whose original renal disease is unknown. Swiss model predict the 3D structure of the protein. The related literature was searched by using search terms “NPHP” in PubMed CNKI and VIP database from January 2000 to January 2020. Results The whole exome by next-generation sequencing and found two unreported TTC21B mutation sites, c.497del (p.Lys166Serfs) and c.2323−3T > A. The c.497del (p.Lys166Serfs) variant, which is a frame shift mutation, suggested deletion of a single nucleotide. A at position 497 from the TTC21B gene CDS results in replacement of lysine by serine at codon 166 of the TTC21B protein, as well as premature translational stop at position 201. The c.2323−3T > A variant indicates that the antepenultimate base of intron upstream of nucleotide 2323 in the CDS region of TTC21B gene changes from T to A. The change in the three-dimensional structure of the protein caused by the mutations in TTC21B may affect the functions associated with the protein length shorten. Further, this study summarized 25 NPHP gene mutations and the phenotypes that have been reported. Conclusion This study reported two novel mutations in the TTC21B gene resulting in NPHP in a Chinese patient and expanded on the spectrum of known causative mutations of TTC21B gene.


2002 ◽  
Vol 184 (14) ◽  
pp. 4018-4024 ◽  
Author(s):  
Ulf Olsson ◽  
Annika Billberg ◽  
Sara Sjövall ◽  
Salam Al-Karadaghi ◽  
Mats Hansson

ABSTRACT Ferrochelatase (EC 4.99.1.1) catalyzes the last reaction in the heme biosynthetic pathway. The enzyme was studied in the bacterium Bacillus subtilis, for which the ferrochelatase three-dimensional structure is known. Two conserved amino acid residues, S54 and Q63, were changed to alanine by site-directed mutagenesis in order to detect any function they might have. The effects of these changes were studied in vivo and in vitro. S54 and Q63 are both located at helix α3. The functional group of S54 points out from the enzyme, while Q63 is located in the interior of the structure. None of these residues interact with any other amino acid residues in the ferrochelatase and their function is not understood from the three-dimensional structure. The exchange S54A, but not Q63A, reduced the growth rate of B. subtilis and resulted in the accumulation of coproporphyrin III in the growth medium. This was in contrast to the in vitro activity measurements with the purified enzymes. The ferrochelatase with the exchange S54A was as active as wild-type ferrochelatase, whereas the exchange Q63A caused a 16-fold reduction in V max. The function of Q63 remains unclear, but it is suggested that S54 is involved in substrate reception or delivery of the enzymatic product.


Sign in / Sign up

Export Citation Format

Share Document