Effect of GNAS transcript manipulation on human mesenchymal stem cells differentiation towards osteocyte cell lineage: insight into the pathophysiology of ectopic ossification in GNAS-related disorders

2015 ◽  
Author(s):  
Francesca Marta Elli ◽  
Valentina Boldrin ◽  
Valentina Parazzi ◽  
Enrico Ragni ◽  
Paolo Bordogna ◽  
...  
Author(s):  
Thora Bjorg Sigmarsdottir ◽  
Sarah McGarrity ◽  
James T. Yurkovich ◽  
Óttar Rolfsson ◽  
Ólafur Eysteinn Sigurjónsson

Since their initial discovery in 1976, mesenchymal stem cells (MSCs) have been gathering interest as a possible tool to further the development and enhancement of various therapeutics within regenerative medicine. However, our current understanding of both metabolic function and existing differences within the varying cell lineages (e.g., cells in either osteogenesis or adipogenesis) is severely lacking making it more difficult to fully realize the therapeutic potential of MSCs. Here, we reconstruct the MSC metabolic network to understand the activity of various metabolic pathways and compare their usage under different conditions and use these models to perform experimental design. We present three new genome-scale metabolic models (GEMs) each representing a different MSC lineage (proliferation, osteogenesis, and adipogenesis) that are biologically feasible and have distinctive cell lineage characteristics that can be used to explore metabolic function and increase our understanding of these phenotypes. We present the most distinctive differences between these lineages when it comes to enriched metabolic subsystems and propose a possible osteogenic enhancer. Taken together, we hope these mechanistic models will aid in the understanding and therapeutic potential of MSCs.


2019 ◽  
Vol 14 (9) ◽  
pp. 841-865 ◽  
Author(s):  
Dana Alhattab ◽  
Fatima Jamali ◽  
Dema Ali ◽  
Hana Hammad ◽  
Sofia Adwan ◽  
...  

Aim: Variations in the clinical outcomes using mesenchymal stem cells (MSCs) treatments exist, reflecting different origins and niches. To date, there is no consensus on the best source of MSCs most suitable to treat a specific disease. Methods: Total transcriptome analysis of human MSCs was performed. MSCs were isolated from two adult sources bone marrow, adipose tissue and two perinatal sources umbilical cord and placenta. Results: Each MSCs type possessed a unique expression pattern that reflects an advantage in terms of their potential therapeutic use. Advantages in immune modulation, neurogenesis and other aspects were found. Discussion: This study is a milestone for evidence-based choice of the type of MSCs used in the treatment of diseases.


Stem Cells ◽  
2005 ◽  
Vol 23 (10) ◽  
pp. 1608-1616 ◽  
Author(s):  
Xianying Ren ◽  
Motonobu Katoh ◽  
Hidetoshi Hoshiya ◽  
Akihiro Kurimasa ◽  
Toshiaki Inoue ◽  
...  

2010 ◽  
Vol 30 (6) ◽  
pp. 455-455 ◽  
Author(s):  
Dongyan Shi ◽  
Dan Ma ◽  
Feiqing Dong ◽  
Chen Zong ◽  
Liyue Liu ◽  
...  

2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1320001-s-0032-1320001
Author(s):  
F. Mwale ◽  
H. T. Wang ◽  
L. Haglund ◽  
P. J. Roughley ◽  
J. Antoniou

2020 ◽  
Author(s):  
I Foessl ◽  
A Groselj-Strele ◽  
JC Piswanger-Sölkner ◽  
H Dobnig ◽  
A Fahrleitner-Pammer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document