ectopic ossification
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 3)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Atsushi Kimura ◽  
Akiyoshi Hirayama ◽  
Tatsuaki Matsumoto ◽  
Yuiko Sato ◽  
Tami Kobayashi ◽  
...  

Ossification of the posterior longitudinal ligament (OPLL), a disease characterized by the ectopic ossification of a spinal ligament, promotes neurological disorders associated with spinal canal stenosis. While blocking ectopic ossification is mandatory to prevent OPLL development and progression, the mechanisms underlying the condition remain unknown. Here we show that expression of hydroxyacid oxidase 1 (Hao1), a gene identified in a previous genome-wide association study (GWAS) as an OPLL-associated candidate gene, specifically and significantly decreased in fibroblasts during osteoblast differentiation. We then newly established Hao1-deficient mice by generating Hao1-flox mice and crossing them with CAG-Cre mice to yield global Hao1-knockout (CAG-Cre/Hao1flox/flox; Hao1 KO) animals. Hao1 KO mice were born normally and exhibited no obvious phenotypes, including growth retardation. Moreover, Hao1 KO mice did not exhibit ectopic ossification or calcification. However, urinary levels of some metabolites of the tricarboxylic acid (TCA) cycle were significantly lower in Hao1 KO compared to control mice based on comprehensive metabolomic analysis. Our data indicate that Hao1 loss does not promote ectopic ossification, but rather that Hao1 functions to regulate the TCA cycle in vivo.


2022 ◽  
Author(s):  
Shi Cheng ◽  
Siqi Zhang ◽  
Jinglong Yan ◽  
Songcen Lv

Abstract Background Heterotopic ossification (HO) refers to a painful and complex disease. HO occurs in the setting of persistent systemic inflammation and appears in flare-ups during inflammation, following injury. In the recent research, the P2X7 receptor (P2X7R) is tightly involved in the osteogenesis of periodontal ligament stem cells under the inflammatory conditions. The ionotropic P2X7 receptor (P2X7R) is an ATP-gated ion channel expressed in the majority of stem cells. However, the function of P2X7R in the pathological formation of HO is unclear. Here, this paper hypothesizes that in the model of Achilles tendon ectopic ossification, P2X7R is overexpressed in tendon-derived stem cells and promote osteogenesis of tendon-derived stem cells under inflammatory conditions. Methods The tenotomy puncture and burn injury-induced HO model was constructed. The qPCR and immunofluorescence were used to detect the expression of P2X7R at the site of injured Achilles tendon where HO occurs. Achilles tendon stem cells (SCs) from control group and experimental group sources were cultivated separately under inflammatory conditions. The cells from the two groups were cultured for osteogenic analysis. In addition, a specific antagonist of P2X7R, BBG was used to detect whether reversed the above process. At last, BBG was used to intervene in animal models of heterotopic ossification. Results Under inflammatory conditions, P2X7R expression of the Achilles tendon and osteogenic capability of SCs is higher in heterotopic ossification group (HOG) than in other two groups. The P2X7R expression was positive correlated with the capacity of osteogenesis of SCs. BBG can inhibit osteogenic differentiation and subsequent bone formation in the P2X7R overexpress of SCs. BBG impeded the heterotopic bone formation in animal model. Conclusions P2X7R is one of the crucial mediators in the formation of the HO, blocking which may represent a potential therapeutic target for HO.


2021 ◽  
Vol 10 (4) ◽  
pp. 122-130
Author(s):  
D. S. Semenova ◽  
A. B. Malashicheva

Degenerative calcific aortic valve stenosis is the most common type of heart valve disease in the Western world. Patients with severe stenosis are associated with 50 percent chance of mortality within two years in the absence of intervention. Surgical interventions are the only treatment method for severe calcific aortic valve stenosis to date. Pharmacological approaches have so far failed to affect the course of the disease. Thus, there is an urgent need to develop novel treatment strategies that could slow down the progression of the stenosis. ZBTB16 is a zinc finger protein with N-term BTB/POZ domain (protein-protein interaction motif) and 9 zinc finger domains (DNA binding motif) in C-term. There is growing evidence proving the participation of ZBTB16 in skeletal development. ZBTB16 has been shown to play a role in the specification of limb and axial skeleton patterning. Moreover, the expression of ZBTB16 is increased in patients with ectopic bone formation. Nowadays, the evidence supports that the mechanisms that play key roles in the formation of bone tissue are similar to the processes occurring during the development of ectopic ossification of the aortic valve. Thus, it can be assumed that ZBTB16 is heavily involved in osteogenic transformation in the aortic valve. Understanding similarities and differences in the mechanisms that mediate osteogenic differentiation of stem cells during bone formation and pathological ossification of tissues can help to find the ways to control the osteogenic differentiation in the human body. The aim of this review is to summarize data on the role of ZBTB16 and its products in the regulation of differentiation and proliferation of cells involved in osteogenesis and in the development of ectopic calcification of the aortic valve. The study of the dynamic changes of ZBTB16 expression in aortic valve calcification is a new and relevant study field.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fan Lai ◽  
Hong Tang ◽  
Jingjing Wang ◽  
Kang Lu ◽  
Xuting Bian ◽  
...  

Abstract Introduction Tendon diseases and injuries are a serious problem for the aged population, often leading to pain, disability and a significant decline in quality of life. The purpose of this study was to determine the influence of aging on biochemistry and histology during tendon healing and to provide a new strategy for improving tendon healing. Method A total of 24 Sprague-Dawley rats were equally divided into a young and an aged group. A rat patellar tendon defect model was used in this study. Tendon samples were collected at weeks 2 and 4, and hematoxylin-eosin, alcian blue and immunofluorescence staining were performed for histological analysis. Meanwhile, reverse transcription-polymerase chain reaction (RT-PCR) and western blot were performed to evaluate the biochemical changes. Results The histological scores in aged rats were significantly lower than those in young rats. At the protein level, collagen synthesis-related markers Col-3, Matrix metalloproteinase-1 and Metallopeptidase Inhibitor 1(TIMP-1) were decreased at week 4 in aged rats compared with those of young rats. Though there was a decrease in the expression of the chondrogenic marker aggrecan at the protein level in aged tendon, the Micro-CT results from weeks 4 samples showed no significant difference(p>0.05) on the ectopic ossification between groups. Moreover, we found more adipocytes accumulated in the aged tendon defect with the Oil Red O staining and at the gene and protein levels the markers related to adipogenic differentiation. Conclusions Our findings indicate that tendon healing is impaired in aged rats and is characterized by a significantly lower histological score, decreased collagen synthesis and more adipocyte accumulation in patellar tendon after repair.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Misun Cha ◽  
Yuan-Zhe Jin ◽  
Jin Wook Park ◽  
Kyung Mee Lee ◽  
Shi Huan Han ◽  
...  

Abstract Background Critical bone defects remain challenges for clinicians, which cannot heal spontaneously and require medical intervention. Following the development of three-dimensional (3D) printing technology is widely used in bone tissue engineering for its outstanding customizability. The 3D printed scaffolds were usually accompanied with growth factors, such as bone morphometric protein 2 (BMP-2), whose effects have been widely investigated on bone regeneration. We previously fabricated and investigated the effect of a polylactic acid (PLA) cage/Biogel scaffold as a carrier of BMP-2. In this study, we furtherly investigated the effect of another shape of PLA cage/Biogel scaffold as a carrier of BMP-2 in a rat calvaria defect model and an ectopic ossification (EO) model. Method The PLA scaffold was printed with a basic commercial 3D printer, and the PLA scaffold was combined with gelatin and alginate-based Biogel and BMP-2 to induce bone regeneration. The experimental groups were divided into PLA scaffold, PLA scaffold with Biogel, PLA scaffold filled with BMP-2, and PLA scaffold with Biogel and BMP-2 and were tested both in vitro and in vivo. One-way ANOVA with Bonferroni post-hoc analysis was used to determine whether statistically significant difference exists between groups. Result The in vitro results showed the cage/Biogel scaffold released BMP-2 with an initial burst release and followed by a sustained slow-release pattern. The released BMP-2 maintained its osteoinductivity for at least 14 days. The in vivo results showed the cage/Biogel/BMP-2 group had the highest bone regeneration in the rat calvarial defect model and EO model. Especially, the bone regenerated more regularly in the EO model at the implanted sites, which indicated the cage/Biogel had an outstanding ability to control the shape of regenerated bone. Conclusion In conclusion, the 3D printed PLA cage/Biogel scaffold system was proved to be a proper carrier for BMP-2 that induced significant bone regeneration and induced bone formation following the designed shape.


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Yisheng Chen ◽  
Yaying Sun ◽  
Yuzhen Xu ◽  
Wei-Wei Lin ◽  
Zhiwen Luo ◽  
...  

Introduction. Regeneration of fibrochondrocytes is essential for the healing of the tendon-bone interface (TBI), which is similar to the formation of neurogenic heterotopic ossification (HO). Through single-cell integrative analysis, this study explored the homogeneity of HO cells and fibrochondrocytes. Methods. This study integrated six datasets, namely, GSE94683, GSE144306, GSE168153, GSE138515, GSE102929, and GSE110993. The differentiation trajectory and key transcription factors (TFs) for HO occurrence were systematically analyzed by integrating single-cell RNA (scRNA) sequencing, bulk RNA sequencing, and assay of transposase accessible chromatin seq. The differential expression and enrichment pathways of TFs in heterotopically ossified tissues were identified. Results. HO that mimicked pathological cells was classified into HO1 and HO2 cell subsets. Results of the pseudo-temporal sequence analysis suggested that HO2 is a differentiated precursor cell of HO1. The analysis of integrated scRNA data revealed that ectopically ossified cells have similar transcriptional characteristics to cells in the fibrocartilaginous zone of tendons. The modified SCENIC method was used to identify specific transcriptional regulators associated with ectopic ossification. Xbp1 was defined as a common key transcriptional regulator of ectopically ossified tissues and the fibrocartilaginous zone of tendons. Subsequently, the CellPhoneDB database was completed for the cellular ligand-receptor analysis. With further pathway screening, this study is the first to propose that Xbp1 may upregulate the Notch signaling pathway through Jag1 transcription. Twenty-four microRNAs were screened and were found to be potentially associated with upregulation of XBP1 expression after acute ischemic stroke. Conclusion. A systematic analysis of the differentiation landscape and cellular homogeneity facilitated a molecular understanding of the phenotypic similarities between cells in the fibrocartilaginous region of tendon and HO cells. Furthermore, by identifying Xbp1 as a hub regulator and by conducting a ligand–receptor analysis, we propose a potential Xbp1/Jag1/Notch signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Linbo Peng ◽  
Jun Ma ◽  
Yi Zeng ◽  
Yuangang Wu ◽  
Haibo Si ◽  
...  

Abstract Background Although the high offset Tri-Lock bone preservation stem (BPS) was used widely, few studies explored the clinical and radiological results. The purpose of this study was to determine the clinical and radiological results of high offset Tri-Lock BPS in unilateral primary total hip arthroplasty (THA) at a minimum follow-up of 3 years. Methods 55 patients who underwent cementless THA with high offset Tri-lock BPS from 2017 to 2018 were followed for a minimum follow-up of 3 years. Patients were assessed clinically for complications, Harris hip score (HHS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Oxford Hip Score (OHS). Femoral offset (FO), acetabular offset (AO), hip offset (HO), HO difference, and leg length discrepancy (LLD) were measured on the anteroposterior (AP) pelvic radiograph. Standard pelvic AP and lateral radiographs were used to evaluate for evidence of bone ingrowth, stem subsidence, stem alignment, radiolucent line around the stem, osteolysis, loosening, ectopic ossification, and femoral stress shielding. Results No patients reported complications during hospitalization nor the follow-up period. At a mean follow-up of 42.5 months, the mean HHS, WOMAC, and OHS scores showed a significant improvement from preoperative to the latest follow-up. No patients reported thigh pain. No revision nor sign of radiographic loosening had been detected. The high offset Tri-Lock BPS significantly improved the FO and HO postoperatively. HO difference and LLD were balanced postoperatively. No sign of stem subsidence, radiolucent line, osteolysis, loosening, ectopic ossification, nor severe stress shielding (more than grade 3–4) were observed at the latest follow-up. Conclusion The high offset Tri-Lock BPS demonstrated excellent clinical and radiographic outcomes at a minimum follow-up of 3 years. HO difference and LLD between legs decreased significantly and achieved balance postoperatively. Long-term follow-up is required for a definitive conclusion.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Yuan-Zhe Jin ◽  
Guang-Bin Zheng ◽  
Minjoon Cho ◽  
Jae Hyup Lee

Abstract Background Bone substrates like hydroxyapatite and tricalcium phosphate have been widely used for promoting spinal fusion and reducing the complications caused by autograft. Whitlockite has been reported to promote better bone formation in rat calvaria models compare with them, but no study investigated its effect on spinal fusion yet. Also, the higher osteoinductivity of whitlockite raised concern of ectopic ossification, which was a complication of spinal fusion surgery that should be avoided. Methods In this study, we compared the osteoinductivity of whitlockite, hydroxyapatite, and tricalcium phosphate porous particles with SD rat spine posterolateral fusion model and investigated whether whitlockite could induce ectopic ossification with SD rat abdominal pouch model. Results The micro-CT result from the posterolateral fusion model showed whitlockite had slightly but significantly higher percent bone volume than tricalcium phosphate, though none of the materials formed successful fusion with surrounding bone tissue. The histology results showed the bone formed on the cortical surface of the transverse process but did not form a bridge between the processes. The result from the abdominal pouch model showed whitlockite did not induce ectopic bone formation. Conclusion Whitlockite had a potential of being a better bone substrate hydroxyapatite and tricalcium phosphate in spinal fusion with low risk of inducing ectopic ossification.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Belén Prados ◽  
Raquel del Toro ◽  
Donal MacGrogan ◽  
Paula Gómez-Apiñániz ◽  
Tania Papoutsi ◽  
...  

AbstractBone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Zhenzhen Zhang ◽  
Jing Zeng ◽  
Yang Li ◽  
Qing Liao ◽  
Dongdong Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document