scholarly journals Expression of LH receptor in nonpregnant mouse endometrium: LH induction of 3β-HSD and de novo synthesis of progesterone

2012 ◽  
Vol 215 (1) ◽  
pp. 151-165 ◽  
Author(s):  
Sourav Kundu ◽  
Kousik Pramanick ◽  
Sudipta Paul ◽  
Arun Bandyopadhyay ◽  
Dilip Mukherjee

In mouse uterus, at the late diestrus stage LH binding sites have previously been described. The aim of our study was to confirm the existence of LH receptor (Lhr (Lhcgr)) mRNA and its protein in mouse endometrium. Endometrium at all stages of the estrous cycle contained Lhr mRNA, essentially identical to that found in mouse ovary. Endometrium also contained a 72 kDa immunoreactive receptor protein that bound to mouse anti-LHR antibody in western blot. Both receptor mRNA and protein were maximally expressed in the endometrium at metestrus and LH caused a significant increase in their expression levels. Endometrium also contained 3β-hydroxy steroid dehydrogenase (3β-hsd) mRNA and 3β-HSD protein. LH addition elevated their expression and activity as evident from increased conversion of labeled pregnenolone to progesterone (P4) and de novo P4 synthesis. LH-induced endometrial P4 synthesis is mediated through expression of steroidogenic acute regulatory (Star) gene. Results demonstrated that LH-induced P4 synthesis in endometrium is possibly mediated through the cAMP pathway. Involvement of a MAPK pathway was also evident. Gonadotropin-stimulated endometrial P4 synthesis was markedly attenuated by an antagonist of MEK1/2, PD98059. LH-stimulated MEK1/2-dependent phosphorylation of ERK1/2 in a concentration- and time-dependant manner in cultured endometrial tissues. Moreover, involvement of cAMP in LH-stimulated activation of ERK1/2 was also evident. It is therefore possible that the major signaling pathways regulating endometrial steroidogenesis in mouse, including the adenylate cyclase and MAP kinase pathways, converge at a point distal to activation of protein kinase A and ERK1/2.

Author(s):  
MURUGESH KANDASAMY ◽  
MUHAMMED SALIHIN ◽  
MALLIKARJUNA RAO PICHIKA ◽  
SLAVKO KOMARNYTSKY ◽  
THIRUMURUGAN RATHINASABAPATHY

2021 ◽  
pp. 0271678X2110267
Author(s):  
Peipei Pan ◽  
Shantel Weinsheimer ◽  
Daniel Cooke ◽  
Ethan Winkler ◽  
Adib Abla ◽  
...  

Brain arteriovenous malformations (bAVM) are an important cause of intracranial hemorrhage (ICH), especially in younger patients. The pathogenesis of bAVM are largely unknown. Current understanding of bAVM etiology is based on studying genetic syndromes, animal models, and surgically resected specimens from patients. The identification of activating somatic mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene and other mitogen-activated protein kinase ( MAPK) pathway genes has opened up new avenues for bAVM study, leading to a paradigm shift to search for somatic, de novo mutations in sporadic bAVMs instead of focusing on inherited genetic mutations. Through the development of new models and understanding of pathways involved in maintaining normal vascular structure and functions, promising therapeutic targets have been identified and safety and efficacy studies are underway in animal models and in patients. The goal of this paper is to provide a thorough review or current diagnostic and treatment tools, known genes and key pathways involved in bAVM pathogenesis to summarize current treatment options and potential therapeutic targets uncovered by recent discoveries.


PEDIATRICS ◽  
1972 ◽  
Vol 49 (2) ◽  
pp. 198-205
Author(s):  
C. H. Shackleton ◽  
F. L. Mitchell ◽  
J. W. Farquhar

Pregnanetriol was not excreted by an infant (7 days old) who was later shown to have a defect in steroid 21-hydroxylase. However, the excretion of this compound increased during the following days (1.2 mg on the thirteenth day of life). A high excretion of 3β-hydroxy-Δ steroids was the most noticeable abnormality in steroid excretion noted on the seventh day of life (e.g., 3β, 16α-dihydroxy-5-pregnen-20-one, 15 mg; 3β, 21-dihydroxy-5-pregnen-20-one, 1.4 mg and 3β, 16α-dihydroxy-5-androsten-17-one, 7.4 mg). This high 3β-hydroxy-Δ steroid excretion results in difficulties in distinguishing a defect in 3β-hydroxy steroid dehydrogenase from a 21-hydroxylase deficiency. At the age of 14 months the principal steroids excreted were those predominant in other cases of 21-hydroxylase deficiency, viz. pregnanetriol and 5β-pregnane-3α, 17α, 20α-triol-11-one (11-oxo-pregnanetriol).


1962 ◽  
Vol 17 (7) ◽  
pp. 432-436 ◽  
Author(s):  
Matatiahu Gehatia

The enzyme 20-β-Hydroxy-steroid-dehydrogenase obtained from the culture of Streptomyces hydrogenans and dissolved in 0.05 M Tris puffer, pH 7.3, has been investigated by means of a ultracentrifuge at 20 °C. The sedimentation- as well as the diffusion-coefficients obtained from various solutions at different concentrations were extrapolated to the concentration c = 0. The resulting zero-value for the sedimentation coefficient is s0 = 6.64 s and for the diffusion coefficient is D0 = 5.51 × 10-7 cm2/sec. Supposing the partial specific volume of the enzyme under consideration analogously to other similar proteins is V+=0.749 ml/g, the molecular weight has been estimated as M = 118 400.


1980 ◽  
Vol 185 (2) ◽  
pp. 411-421 ◽  
Author(s):  
M Akhtar ◽  
M Calder ◽  
T Smith ◽  
J N Wright

The mechanism of isomerization of delta 5-3-ox steroids to delta 4-3-oxo steroids was examined by using the membrane-bound 3-oxo steroid delta 4-delta 5-isomerase (EC 5.3.3.1) and the 3 beta-hydroxy steroid dehydrogenase present in the microsomal fraction obtained from full-term human placenta. (1) Methods for the preparation of androst-5-ene-3 beta, 17 beta-diol specifically labelled at the 4 alpha-, 4 beta- or 6-positions are described. (2) Incubations with androst-5-ene-3 beta, 17 beta-diol stereospecifically 3H-labelled either in the 4 alpha- or 4 beta-position showed that the isomerization reaction occurs via a stereospecific elimination of the 4 beta hydrogen atom. In addition, the complete retention of 3H in the delta 4-3-oxo steroids obtained from [4 alpha-3H]androst-5-ene-3 beta, 17 beta-diol indicates that the non-enzymic contribution to these experiments was negligible. (3) To study the stereochemistry of the insertion of the incoming proton at C-6, the [6-3H]androst-4-ene-3, 17-dione obtained from the oxidation isomerization of [6-3H]androst-5-ene-3 beta, 17 beta-diol was enzymically hydroxylated in the 6 beta-position by the fungus Rhizopls stolonifer. Retention of 3H in the 6 alpha-position of the isolated 6 beta-hydroxyandrost-4-ene-3, 17-dione indicates that in the isomerase-catalysed migration of the C(5) = C(6) double bond, the incoming proton from the acidic group on the enzyme must enter C-6 from the beta-face, forcing the existing 3H into the 6 alpha-position.


1991 ◽  
Vol 37 (10) ◽  
pp. 1843-1848 ◽  
Author(s):  
E G Biglieri ◽  
C E Kater

Abstract Adrenocortical causes of hypertension are established by examining the mineralocorticoid hormones produced in the zona glomerulosa and zona fasciculata. In the zona glomerulosa, aldosterone excess leads to hypertension, hypokalemia, and suppressed plasma renin activity, with increased concentrations of urinary aldosterone (either as the 18-glucuronide or free aldosterone) as an index of its production. Identifying a tumor by computed tomography scan verifies the diagnosis of a correctable lesion. If no tumor is found, several maneuvers are used to identify primary adrenal hyperplasia, a disorder with autonomous aldosterone production, for which reduction of adrenal mass is curative. The zona fasciculata has two major pathways: the 17-deoxy pathway, where deoxycorticosterone (DOC) and corticosterone are the significant steroids, and the 17-hydroxy pathway, which leads to cortisol production. Tumors of the 17-deoxy pathway, DOC-producing adenomas, have increased concentrations of DOC and its precursor steroids, normal concentrations of cortisol, and suppression of aldosterone production secondary to suppression of the renin system. Two enzymatic defects in the zona fasciculata, 11 beta- and 17 alpha-hydroxylase deficiency, can be first readily identified by the virilization in the former, hypogonadal features in the latter. Steroid patterns are diagnostic. DOC is produced in excess in both deficiencies and is the cause of the hypertension. Deficient or impaired 11 beta-hydroxy steroid dehydrogenase in the apparent mineralocorticoid excess syndrome or after licorice ingestion retards the conversion of cortisol to inactive cortisone in the kidney, leading to mineralocorticoid hypertension; this leads to suppression of the renin system and subsequently of aldosterone.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1062 ◽  
Author(s):  
Pauline Tétu ◽  
Julie Delyon ◽  
Jocelyne André ◽  
Coralie Reger de Moura ◽  
Malak Sabbah ◽  
...  

KIT is a bona fide oncogene in a subset of melanoma and, ex vivo, KIT inhibitors are very efficient at killing KIT-mutant melanoma cell lines. However, KIT-mutant melanoma tumors tend to show a de novo resistance in most cases and a limited duration of response when response is achieved. We performed pharmacodynamic studies on patients with KIT-mutated melanoma treated with nilotinib, which suggested that the FGF2 axis may be a mechanism of resistance in this subset of melanoma. Using several melanoma cell lines, which are dependent on oncogenic KIT, we showed that although KIT inhibition markedly decreased cell viability in melanoma cell lines with distinct KIT mutations, this effect was lessened in the presence of FGF2 due to inhibition of BIM expression by MAPK pathway activation. Addition of a MEK inhibitor reversed the FGF2-driven resistance for all KIT mutants. We confirmed the expression of FGF2 and activation of MEK-ERK in melanoma patients using in situ data from a clinical trial. Therefore, the combined inhibition of KIT with FGFR or MEK may be a next-step effective clinical strategy in KIT-mutant melanoma.


Sign in / Sign up

Export Citation Format

Share Document