mouse uterus
Recently Published Documents


TOTAL DOCUMENTS

798
(FIVE YEARS 41)

H-INDEX

61
(FIVE YEARS 2)

2021 ◽  
Vol 23 (1) ◽  
pp. 199
Author(s):  
Zhen-Shan Yang ◽  
Hai-Yang Pan ◽  
Wen-Wen Shi ◽  
Si-Ting Chen ◽  
Ying Wang ◽  
...  

Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.



Endocrinology ◽  
2021 ◽  
Author(s):  
Vijay K Sirohi ◽  
Theresa I Medrano ◽  
Ana M Mesa ◽  
Athilakshmi Kannan ◽  
Indrani C Bagchi ◽  
...  

Abstract 17β-Estradiol (E2) treatment of ovariectomized adult mice stimulates the uterine PI3K-AKT signaling pathway and epithelial proliferation through estrogen receptor 1 (ESR1). However, epithelial proliferation occurs independently of E2/ESR1 signaling in neonatal uteri. Similarly, estrogen-independent uterine epithelial proliferation is seen in adulthood in mice lacking Ezh2, critical for histone methylation, and in WT mice treated neonatally with estrogen. The role of AKT in this estrogen-independent uterine epithelial proliferation was the focus of this study. Expression of p-AKT and epithelial proliferation were high in estrogen receptor 1 knockout and WT mice at postnatal day 6 (PND 6), when E2 concentrations were low, indicating that neither ESR1 nor E2 are essential for p-AKT expression and epithelial proliferation in these mice. However, p-AKT levels and proliferation remained estrogen responsive in pre-weaning WT mice. Expression of p-AKT and proliferation were both high in uterine luminal epithelium of mice estrogenized neonatally and ovariectomized during adulthood. Increased expression of phosphorylated (inactive) EZH2 was also observed. Consistent with this, Ezh2 conditional knockout mice show ovary-independent uterine epithelial proliferation and high epithelial p-AKT. Thus, adult p-AKT expression is constitutive and E2/ESR1 independent in both model systems. Finally, E2-induced p-AKT expression and normal uterine proliferation did not occur in mice lacking membrane (m)ESR1, indicating a key role for mESR1 in AKT activation. These findings emphasize the importance of p-AKT activation in promoting uterine epithelial proliferation even when that proliferation is not E2/ESR1 dependent and further indicate that p-AKT can be uncoupled from E2/ESR1 signaling in several experimental scenarios.



Author(s):  
Tae Hoon Kim ◽  
Steven L Young ◽  
Tsutomu Sasaki ◽  
Jeffrey L Deaton ◽  
David P Schammel ◽  
...  

Abstract Context Progesterone resistance, a known pathologic condition associated with a reduced cellular response to progesterone and heightened estrogen responses, appears to have a normal physiologic role in mammalian reproduction. The molecular mechanism responsible for progesterone resistance in normal and abnormal endometrium remains unclear. Objective To examine the roles of Sirtuin-1 (SIRT1) in normal endometrium as well as endometrium associated with infertility and endometriosis, as an epigenetic modulator associated with progesterone resistance. Methods SIRT1 expression was examined by Western blot, RT-qPCR and immunohistochemistry in mouse uterus and human endometrium. Mice with uterine specific Sirt1 overexpression were developed to examine SIRT1’s role in endometrial function and endometriosis development. EX-527, a SIRT1 inhibitor, and SRT1720, a SIRT1 agonist, were also used to evaluate SIRT1 effect on endometriosis. Results In normal healthy women, endometrial SIRT1 is expressed only during menses. SIRT1 was dramatically overexpressed in the endometrium from women with endometriosis in both the epithelium and strom. In mice, SIRT1 is expressed at the time of implantation between day 4.5 and 5.5 of pregnancy. Overexpression of SIRT1 (Sirt1  over) in the mouse uterus leads to subfertility due to implantation failure and decidualization defects and progesterone resistance. SIRT1 overexpression in endometriotic lesion promotes worsening endometriosis development. EX-527 (SIRT1 inhibitor) significantly reduced the number of endometriotic lesions in the mouse endometriosis model. Conclusions SIRT1 expression and progesterone resistance appears to play -roles in normal endometrial functions. Aberrant SIRT1 expression contributes to progesterone resistance and may participate in the pathophysiology of endometriosis. SIRT1 is a novel and targetable protein for the diagnosis as well as treatment of endometriosis and the associated infertility seen in this disease.



2021 ◽  
Vol 118 (40) ◽  
pp. e2109252118
Author(s):  
Andrew M. Kelleher ◽  
Rohit Setlem ◽  
Françoise Dantzer ◽  
Francesco J. DeMayo ◽  
John P. Lydon ◽  
...  

Miscarriage is a common complication of pregnancy for which there are few clinical interventions. Deficiency in endometrial stromal cell decidualization is considered a major contributing factor to pregnancy loss; however, our understanding of the underlying mechanisms of decidual deficiency are incomplete. ADP ribosylation by PARP-1 and PARP-2 has been linked to physiological processes essential to successful pregnancy outcomes. Here, we report that the catalytic inhibition or genetic ablation of PARP-1 and PARP-2 in the uterus lead to pregnancy loss in mice. Notably, the absence of PARP-1 and PARP-2 resulted in increased p53 signaling and an increased population of senescent decidual cells. Molecular and histological analysis revealed that embryo attachment and the removal of the luminal epithelium are not altered in uterine Parp1, Parp2 knockout mice, but subsequent decidualization failure results in pregnancy loss. These findings provide evidence for a previously unknown function of PARP-1 and PARP-2 in mediating decidualization for successful pregnancy establishment.



Reproduction ◽  
2021 ◽  
Author(s):  
Ran Li ◽  
Xiao-Tong Song ◽  
Si-Wei Guo ◽  
Na Zhao ◽  
Mei He ◽  
...  

As a multifunctional transcription factor, YY1 regulates the expression of many genes essential for early embryonic development. RTCB is an RNA ligase that plays a role in tRNA maturation and Xbp1 mRNA splicing. YY1 can bind in vitro to the response element in the proximal promoter of Rtcb and regulate Rtcb promoter activity. However, the in vivo regulation and whether these two genes are involved in the mother-fetal dialogue during early pregnancy remain unclear. In this study, we validated that YY1 bound in vivo to the proximal promoter of Rtcb in mouse uterus of early pregnancy. Moreover, via building a variety of animal models, our study suggested that both YY1 and RTCB might play a role in mouse uterus decidualization and embryo implantation during early pregnancy.



2021 ◽  
Vol 22 (17) ◽  
pp. 9403
Author(s):  
Jihyun Lee ◽  
Haeun Park ◽  
Sohyeon Moon ◽  
Jeong-Tae Do ◽  
Kwonho Hong ◽  
...  

Cluster of differentiation 73 (CD73, also known as ecto-5′-nucleotidase) is an enzyme that converts AMP into adenosine. CD73 is a surface enzyme bound to the outside of the plasma membrane expressed in several cells and regulates immunity and inflammation. In particular, it is known to inhibit T cell-mediated immune responses. However, the regulation of CD73 expression by hormones in the uterus is not yet clearly known. In this study, we investigated the expression of CD73 in ovariectomized mice treated with estrogen or progesterone and its regulation in the mouse uterus during the estrous cycle. The level of CD73 expression was dynamically regulated in the uterus during the estrous cycle. CD73 protein expression was high in proestrus, estrus, and diestrus, whereas it was relatively low in the metestrus stage. Immunofluorescence revealed that CD73 was predominantly expressed in the cytoplasm of the luminal and glandular epithelium and the stroma of the endometrium. The expression of CD73 in ovariectomized mice was gradually increased by progesterone treatment. However, estrogen injection did not affect its expression. Moreover, CD73 expression was increased when estrogen and progesterone were co-administered and was inhibited by the pretreatment of the progesterone receptor antagonist RU486. These findings suggest that the expression of CD73 is dynamically regulated by estrogen and progesterone in the uterine environment, and that there may be a synergistic effect of estrogen and progesterone.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mira Park ◽  
So Hee Park ◽  
Hyunsun Park ◽  
Hye-Ryun Kim ◽  
Hyunjung J. Lim ◽  
...  

Abstract Background Recently, we demonstrated that estrogen (E2) induces early growth response 1 (Egr1) to mediate its actions on the uterine epithelium by controlling progesterone receptor signaling for successful embryo implantation. EGR1 is a transcription factor that regulates the spectrum of target genes in many different tissues, including the uterus. E2-induced EGR1 regulates a set of genes involved in epithelial cell remodeling during embryo implantation in the uterus. However, only few target genes of EGR1 in the uterus have been identified. Result The expression of ADAM metallopeptidase with thrombospondin type 1 motif 1 (Adamts-1) was significantly downregulated in the uteri of E2-treated ovariectomized (OVX) Egr1(−/−) mice. Immunostaining of ADAMTS-1 revealed its exclusive expression in the uterine epithelium of OVX wild-type but not Egr1(−/−) mice treated with E2. The expression profiles of Adamts-1 and Egr1 were similar in the uteri of E2-treated OVX mice at various time points tested. Pre-treatment with ICI 182, 780, a nuclear estrogen receptor (ER) antagonist, effectively inhibited the E2-dependent induction of Egr1 and Adamts-1. Pharmacologic inhibition of E2-induced ERK1/2 or p38 phosphorylation interfered with the induction of EGR1 and ADAMTS-1. Furthermore, ADAMTS-1, as well as EGR1, was induced in stroma cells surrounding the implanting blastocyst during embryo implantation. Transient transfection with EGR1 expression vectors significantly induced the expression of ADAMTS-1. Luciferase activity of the Adamts-1 promoter containing EGR1 binding sites (EBSs) was increased by EGR1 in a dose-dependent manner, suggesting functional regulation of Adamts-1 transcription by EGR1. Site-directed mutagenesis of EBS on the Adamts-1 promoter demonstrated that EGR1 directly binds to the EBS at -1151/-1134 among four putative EBSs. Conclusions Collectively, we have demonstrated that Adamts-1 is a novel target gene of E2-ER-MAPK-EGR1, which is critical for embryo implantation in the mouse uterus during early pregnancy.



BioFactors ◽  
2021 ◽  
Author(s):  
Qi‐Xin Xu ◽  
Wang‐Qing Zhang ◽  
Xiao‐Zheng Liu ◽  
Wan‐Kun Yan ◽  
Lei Lu ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document