Addressing land use and ecotoxicological impacts in Life cycle Assessments of food production technologies

Author(s):  
A.M. De Schryver ◽  
R. van Zelm ◽  
M.A.J. Huijbregts ◽  
M. Goedkoop
2020 ◽  
Vol 54 (11) ◽  
pp. 6486-6495
Author(s):  
Laura Scherer ◽  
Sven A. van Baren ◽  
Peter M. van Bodegom

2014 ◽  
Vol 73 ◽  
pp. 31-39 ◽  
Author(s):  
Stefan Hörtenhuber ◽  
Gerhard Piringer ◽  
Werner Zollitsch ◽  
Thomas Lindenthal ◽  
Wilfried Winiwarter

2021 ◽  
pp. 53-59
Author(s):  
Dennis G. A. B. Oonincx

Abstract This chapter discusses the environmental impact of insect rearing. Direct greenhouse gas (GHG) emissions from insects used as feed or food are discussed and data from life cycle assessments (LCAs) on commercially farmed insects are discussed per species. The relevance of the utilized feed on the environmental impact of insects and their derived products, including suggestions to lower this impact are also discussed. It is concluded that land use associated with insect production generally seems low, compared to conventional feed and food products. The EU (expressed as fossil fuel depletion) of insect production is often high compared to conventional products. To a large extent this is because several LCAs have been conducted for systems in temperate climates, which require extensive climate control.


2021 ◽  
Vol 13 (17) ◽  
pp. 9926
Author(s):  
Anna Kustar ◽  
Dalia Patino-Echeverri

This paper’s purpose is to shed light on the current understanding of the environmental benefits of vegetarian and vegan diets, considering the inclusion of a significant share of processed foods, such as plant-based burgers. We review recent Environmental Life Cycle Assessments of the three main diet types, omnivore, vegetarian, and vegan, and then assesses the environmental impacts of adding two commercial brands of plant-based burgers to vegetarian and vegan diets. The recent literature confirms that compared to omnivore diets adhering to the same dietary guidelines, vegan diets reduce land-use impacts by 50–86%, water use by 22–70%, and greenhouse gas emissions by 21–70%, while vegetarian diets achieve reductions of 27–84% in land use, 15–69% in water use, and 24–56% in greenhouse emissions. The environmental benefits of vegan and vegetarian diets are not affected by the consumption of highly processed plant-based burgers. Consumers reduce land use, water use, and greenhouse gas emissions between 87% and 96% by choosing a Beyond or Impossible burger instead of a regular beef patty. These results are robust to the uncertainties associated with a variety of beef production systems; there is no indication that a situation or condition may make beef burgers more environmentally friendly than these two plant-based alternatives, or that the addition of plant-based meats to vegan and vegetarian diets may reduce their environmental benefits.


2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


Sign in / Sign up

Export Citation Format

Share Document