scholarly journals On integral representation of the solutions of a model $\vec{2b}$-parabolic boundary value problem

2019 ◽  
Vol 11 (1) ◽  
pp. 193-203
Author(s):  
N.I. Turchyna ◽  
S.D. Ivasyshen

A general boundary value problem for Eidelman type $\overrightarrow{2b}$-parabolic system of equation without minor terms in the equations and boundary conditions, and with constant coefficients in the group of major terms is considered in the region $$\{(t,x_1,\dots,x_n)\in \mathbb{R}^{n+1}|t\in(0,T], x_j\in\mathbb{R}, j\in\{1,\dots,n-1\}, x_n>0\},$$ $T>0$, $n\ge 2$. It is assumed that the boundary conditions are connected with the system of equations by the complementing condition, which is analogous to the Lopatynsky complementing condition. Integral representations of the solutions for such a problem are derived. The kernels of the integrals from this representation form the Green's matrix of the problem. It is revealed that, in general, not all the elements of the Green's matrix are ordinary functions. Some of them contain terms that are linear combinations of Dirac delta functions and their derivatives. This occurs in cases when the boundary conditions include derivatives with respect to the variables $t$ and $x_n$ of orders that are equal or greater than the highest orders of derivatives with respect to these variables in the equations of the system. The obtained results are important, in particular, for the establishing of the correct solvability and integral representation of solutions for more general $\overrightarrow{2b}$-parabolic boundary value problems.

2016 ◽  
Vol 11 (1) ◽  
pp. 38-52
Author(s):  
I.M. Utyashev ◽  
A.M. Akhtyamov

The paper discusses direct and inverse problems of oscillations of the string taking into account symmetrical characteristics of the external environment. In particular, we propose a modified method of finding natural frequencies using power series, and also the problem of identification of the boundary conditions type and parameters for the boundary value problem describing the vibrations of a string is solved. It is shown that to identify the form and parameters of the boundary conditions the two natural frequencies is enough in the case of a symmetric potential q(x). The estimation of the convergence of the proposed methods is done.


2021 ◽  
Vol 18 (5) ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Maria Italia Gualtieri ◽  
Anna Napoli

AbstractGeneral nonlinear high odd-order differential equations with Lidstone–Euler boundary conditions of second type are treated both theoretically and computationally. First, the associated interpolation problem is considered. Then, a theorem of existence and uniqueness of the solution to the Lidstone–Euler second-type boundary value problem is given. Finally, for a numerical solution, two different approaches are illustrated and some numerical examples are included to demonstrate the validity and applicability of the proposed algorithms.


1989 ◽  
Vol 12 (4) ◽  
pp. 735-739
Author(s):  
Enrique A. Gonzalez-Velasco

We consider a boundary value problem consisting of the one-dimensional parabolic equationgut=(hux)x+q, where g, h and q are functions of x, subject to some general boundary conditions. By developing a maximum principle for the boundary value problem, rather than the equation, we prove the uniqueness of a nonnegative solution that depends continuously on boundary values.


Sign in / Sign up

Export Citation Format

Share Document