scholarly journals Asymptotics of the entire functions with $\upsilon$-density of zeros along the logarithmic spirals

2019 ◽  
Vol 11 (1) ◽  
pp. 26-32
Author(s):  
M.V. Zabolotskyj ◽  
Yu.V. Basiuk

Let $\upsilon$ be the growth function such that $r\upsilon'(r)/\upsilon (r) \to 0$ as $r \to +\infty$, $l_\varphi^c = \{z=te^{i(\varphi+c \ln t)}, 1 \leqslant t < +\infty\}$ be the logarithmic spiral, $f$ be the entire function of zero order. The asymptotics of $\ln f(re^{i(\theta +c \ln r)})$ along ordinary logarithmic spirals $l_\theta^c$ of the function $f$ with $\upsilon$-density of zeros along $l_\varphi^c$ outside the $C_0$-set is found. The inverse statement is true just in case zeros of $f$ are placed on the finite logarithmic spirals system $\Gamma_m = \bigcup_{j=0}^m l_{\theta_j}^c$.

2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.


1973 ◽  
Vol 51 ◽  
pp. 123-130 ◽  
Author(s):  
Fred Gross ◽  
Chung-Chun Yang ◽  
Charles Osgood

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as left and right factors respe2tively, provided that f(z) is meromorphic and g(z) is entire (g may be meromorphic when f is rational). F(z) is said to be prime (pseudo-prime) if every factorization of the above form implies that one of the functions f and g is bilinear (a rational function). F is said to be E-prime (E-pseudo prime) if every factorization of the above form into entire factors implies that one of the functions f and g is linear (a polynomial). We recall here that an entire non-periodic function f is prime if and only if it is E-prime [5]. This fact will be useful in the sequel.


1995 ◽  
Vol 138 ◽  
pp. 169-177 ◽  
Author(s):  
Hong-Xun yi

For any set S and any entire function f letwhere each zero of f — a with multiplicity m is repeated m times in Ef(S) (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on 0 < r < ∞, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying .


2015 ◽  
Vol 79 (2) ◽  
pp. 233-256
Author(s):  
O A Bozhenko ◽  
A F Grishin ◽  
K G Malyutin

1995 ◽  
Vol 118 (3) ◽  
pp. 527-542 ◽  
Author(s):  
A. C. Offord

SummaryThis is a study of entire functions whose coefficients are independent random variables. When the space of such functions is symmetric it is shown that independence of the coefficients alone is sufficient to ensure that almost all such functions will, for large z, be large except in certain small neighbourhoods of the zeros called pits. In each pit the function takes every not too large value and these pits have a certain uniform distribution.


2010 ◽  
Vol 129-131 ◽  
pp. 235-240 ◽  
Author(s):  
Qiang Li ◽  
Zi Liang Wei ◽  
Hong Bo Yan ◽  
Hai Yan Hu

For a new type of bevel gear—logarithmic spiral bevel gear, establish its tooth direction curves and the mathematical model of tooth surface equation. With CAD software platform which can intuitive understanding of complex curves and combined with conical logarithmic spiral parameter equation build the logarithmic spiral on cone surface. Then array logarithmic spiral to make them evenly distributed in the cone surface, without any interference and to meet the strength distribution on both ends of circular truncated cone equally. Use two logarithmic spirals from different starpoint as tooth direction curves of lift and right tooth surface. Finally, use space geometric knowledge to build tooth surface equation by tooth direction curves and tooth profile curves.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1966 ◽  
Vol 15 (2) ◽  
pp. 121-123 ◽  
Author(s):  
S. L. Segal

Let f(z) be an entire function, M(r) the maximum of f(z) on ∣z∣=r, and λ>1. Let Eλ=Eλ(f{z:log∣f(z)≦(1-λ)log(M∣z∣)}, and denote the density of Eλbywhere m is planar measure.


2020 ◽  
Vol 6 (3-4) ◽  
pp. 459-493
Author(s):  
Vasiliki Evdoridou ◽  
Lasse Rempe ◽  
David J. Sixsmith

AbstractSuppose that f is a transcendental entire function, $$V \subsetneq {\mathbb {C}}$$ V ⊊ C is a simply connected domain, and U is a connected component of $$f^{-1}(V)$$ f - 1 ( V ) . Using Riemann maps, we associate the map $$f :U \rightarrow V$$ f : U → V to an inner function $$g :{\mathbb {D}}\rightarrow {\mathbb {D}}$$ g : D → D . It is straightforward to see that g is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of f in V lie away from the boundary, there is a strong relationship between singularities of g and accesses to infinity in U. In the case where U is a forward-invariant Fatou component of f, this leads to a very significant generalisation of earlier results on the number of singularities of the map g. If U is a forward-invariant Fatou component of f there are currently very few examples where the relationship between the pair (f, U) and the function g has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product g whose Julia set coincides with the unit circle, there exists a transcendental entire function f with an invariant Fatou component such that g is associated with f in the above sense. Furthermore, there exists a single transcendental entire function f with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of f to a wandering domain.


Sign in / Sign up

Export Citation Format

Share Document