scholarly journals Metric on the spectrum of the algebra of entire symmetric functions of bounded type on the complex $L_\infty$

2018 ◽  
Vol 9 (2) ◽  
pp. 198-201 ◽  
Author(s):  
T.V. Vasylyshyn

It is known that every complex-valued homomorphism of the Fréchet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded type on the complex Banach space $L_\infty$ is a point-evaluation functional $\delta_x$ (defined by $\delta_x(f) = f(x)$ for $f \in H_{bs}(L_\infty)$) at some point $x \in L_\infty.$ Therefore, the spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim,$ where an equivalence relation "$\sim$'' on $L_\infty$ is defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, $M_{bs}$ has a natural representation as a set of sequences which endowed with the coordinate-wise addition and the quotient topology forms an Abelian topological group. We show that the topology on $M_{bs}$ is metrizable and it is induced by the metric $d(\xi, \eta) = \sup_{n\in\mathbb{N}}\sqrt[n]{|\xi_n-\eta_n|},$ where $\xi = \{\xi_n\}_{n=1}^\infty,\eta = \{\eta_n\}_{n=1}^\infty \in M_{bs}.$

2017 ◽  
Vol 9 (1) ◽  
pp. 22-27 ◽  
Author(s):  
T.V. Vasylyshyn

It is known that the so-called elementary symmetric polynomials $R_n(x) = \int_{[0,1]}(x(t))^n\,dt$ form an algebraic basis in the algebra of all symmetric continuous polynomials on the complex Banach space $L_\infty,$ which is dense in the Fr\'{e}chet algebra $H_{bs}(L_\infty)$ of all entire symmetric functions of bounded  type on $L_\infty.$ Consequently, every continuous homomorphism $\varphi: H_{bs}(L_\infty) \to \mathbb{C}$ is uniquely determined by the sequence $\{\varphi(R_n)\}_{n=1}^\infty.$ By the continuity of the homomorphism $\varphi,$ the sequence $\{\sqrt[n]{|\varphi(R_n)|}\}_{n=1}^\infty$ is bounded. On the other hand, for every sequence $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C},$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded,  there exists  $x_\xi \in L_\infty$ such that $R_n(x_\xi) = \xi_n$ for every $n \in \mathbb{N}.$ Therefore, for the point-evaluation functional $\delta_{x_\xi}$ we have $\delta_{x_\xi}(R_n) = \xi_n$ for every $n \in \mathbb{N}.$ Thus, every continuous complex-valued homomorphism of $H_{bs}(L_\infty)$ is a point-evaluation functional at some point of $L_\infty.$ Note that such a point is not unique. We can consider an equivalence relation on $L_\infty,$ defined by $x\sim y \Leftrightarrow \delta_x = \delta_y.$ The spectrum (the set of all continuous complex-valued homomorphisms) $M_{bs}$ of the algebra $H_{bs}(L_\infty)$ is one-to-one with the quotient set $L_\infty/_\sim.$ Consequently, $M_{bs}$ can be endowed with the quotient topology. On the other hand, it is naturally to identify $M_{bs}$ with the set of all sequences $\{\xi_n\}_{n=1}^\infty \subset \mathbb{C}$ such that the sequence $\{\sqrt[n]{|\xi_n|}\}_{n=1}^\infty$ is bounded.We show that the quotient topology is Hausdorffand that $M_{bs}$ with the operation of coordinate-wise addition of sequences forms an abelian topological group.


2019 ◽  
Vol 11 (2) ◽  
pp. 493-501
Author(s):  
T.V. Vasylyshyn

It is known that every continuous symmetric (invariant under the composition of its argument with each Lebesgue measurable bijection of $[0,1]$ that preserve the Lebesgue measure of measurable sets) polynomial on the Cartesian power of the complex Banach space $L_\infty$ of all Lebesgue measurable essentially bounded complex-valued functions on $[0,1]$ can be uniquely represented as an algebraic combination, i.e., a linear combination of products, of the so-called elementary symmetric polynomials. Consequently, every continuous complex-valued linear multiplicative functional (character) of an arbitrary topological algebra of the functions on the Cartesian power of $L_\infty,$ which contains the algebra of continuous symmetric polynomials on the Cartesian power of $L_\infty$ as a dense subalgebra, is uniquely determined by its values on elementary symmetric polynomials. Therefore, the problem of the description of the spectrum (the set of all characters) of such an algebra is equivalent to the problem of the description of sets of the above-mentioned values of characters on elementary symmetric polynomials. In this work, the problem of the description of sets of values of characters, which are point-evaluation functionals, on elementary symmetric polynomials on the Cartesian square of $L_\infty$ is completely solved. We show that sets of values of point-evaluation functionals on elementary symmetric polynomials satisfy some natural condition. Also, we show that for any set $c$ of complex numbers, which satisfies the above-mentioned condition, there exists an element $x$ of the Cartesian square of $L_\infty$ such that values of the point-evaluation functional at $x$ on elementary symmetric polynomials coincide with the respective elements of the set $c.$


2021 ◽  
Vol 13 (2) ◽  
pp. 340-351
Author(s):  
T.V. Vasylyshyn

The work is devoted to the study of Fréchet algebras of symmetric (invariant under the composition of every of components of its argument with any measure preserving bijection of the domain of components of the argument) analytic functions on Cartesian powers of complex Banach spaces of Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the segment $[0,1]$ and on the semi-axis. We show that the Fréchet algebra of all symmetric analytic entire complex-valued functions of bounded type on the $n$th Cartesian power of the complex Banach space $L_p[0,1]$ of all Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the segment $[0,1]$ is isomorphic to the Fréchet algebra of all analytic entire functions on $\mathbb C^m,$ where $m$ is the cardinality of the algebraic basis of the algebra of all symmetric continuous complex-valued polynomials on this Cartesian power. The analogical result for the Fréchet algebra of all symmetric analytic entire complex-valued functions of bounded type on the $n$th Cartesian power of the complex Banach space $L_p[0,+\infty)$ of all Lebesgue integrable in a power $p\in [1,+\infty)$ complex-valued functions on the semi-axis $[0,+\infty)$ is proved.


2007 ◽  
Vol 50 (1) ◽  
pp. 3-10
Author(s):  
Richard F. Basener

AbstractIn this paper we introduce a nested family of spaces of continuous functions defined on the spectrum of a uniform algebra. The smallest space in the family is the uniform algebra itself. In the “finite dimensional” case, from some point on the spaces will be the space of all continuous complex-valued functions on the spectrum. These spaces are defined in terms of solutions to the nonlinear Cauchy–Riemann equations as introduced by the author in 1976, so they are not generally linear spaces of functions. However, these spaces do shed light on the higher dimensional properties of a uniform algebra. In particular, these spaces are directly related to the generalized Shilov boundary of the uniform algebra (as defined by the author and, independently, by Sibony in the early 1970s).


2003 ◽  
Vol 46 (3) ◽  
pp. 687-702
Author(s):  
N. A. Chernyavskaya ◽  
L. Shuster

AbstractThe Equation (1) $(r(x)y')'=q(x)y(x)$ is regarded as a perturbation of (2) $(r(x)z'(x))'=q_1(x)z(x)$. The functions $r(x)$, $q_1(x)$ are assumed to be continuous real valued, $r(x)>0$, $q_1(x)\ge0$, whereas $q(x)$ is continuous complex valued. A problem of Hartman and Wintner regarding the asymptotic integration of (1) for large $x$ by means of solutions of (2) is studied. Sufficiency conditions for solvability of this problem expressed by means of coefficients $r(x)$, $q(x)$, $q_1(x)$ of Equations (1) and (2) are obtained.AMS 2000 Mathematics subject classification: Primary 34E20


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Han Ju Lee

Let X be a complex Banach space and Cb(Ω:X) be the Banach space of all bounded continuous functions from a Hausdorff space Ω to X, equipped with sup norm. A closed subspace A of Cb(Ω:X) is said to be an X-valued function algebra if it satisfies the following three conditions: (i) A≔{x⁎∘f:f∈A,  x⁎∈X⁎} is a closed subalgebra of Cb(Ω), the Banach space of all bounded complex-valued continuous functions; (ii) ϕ⊗x∈A for all ϕ∈A and x∈X; and (iii) ϕf∈A for every ϕ∈A and for every f∈A. It is shown that k-homogeneous polynomial and analytic numerical index of certain X-valued function algebras are the same as those of X.


1968 ◽  
Vol 11 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Raimond A. Struble

Mikusinski [1] has extended the operational calculus by methods which are essentially algebraic. He considers the family C of continuous complex valued functions on the half-line [0,∞). Under addition and convolution C becomes a commutative ring. Titchmarsh's theorem [2] shows that the ring has no divisors of zero and, hence, that it may be imbedded in its quotient field Q whose elements are then called operators. Included in the field are the integral, differential and translational operators of analysis as well as certain generalized functions, such as the Dirac delta function. An alternate approach [3] yields a rather interesting result which we shall now describe briefly.


Author(s):  
Sergey S. Platonov

Let G be a zero-dimensional locally compact Abelian group whose elements are compact, C(G) the space of continuous complex-valued functions on the group G. A closed linear subspace H⊆ C(G) is called invariant subspace, if it is invariant with respect to translations τ_y ∶ f(x) ↦ f(x + y), y ∈ G. We prove that any invariant subspace H admits spectral synthesis, which means that H coincides with the closure of the linear span of all characters of the group G contained in H.


Sign in / Sign up

Export Citation Format

Share Document