scholarly journals Genomics Analysis of L-DOPA Exposure in Drosophila sechellia

2019 ◽  
Vol 9 (12) ◽  
pp. 3973-3980 ◽  
Author(s):  
Stephen M. Lanno ◽  
Ivy Lam ◽  
Zachary Drum ◽  
Samuel C. Linde ◽  
Sara M. Gregory ◽  
...  
Keyword(s):  
2015 ◽  
Author(s):  
Yan Huang ◽  
Deniz Erezyilmaz

Many phytophagous insect species are ecologic specialists that have adapted to utilize a single host plant. Drosophila sechellia is a specialist that utilizes the ripe fruit of Morinda citrifolia, which is toxic to its sibling species, D. simulans. Here we apply multiplexed shotgun genotyping and QTL analysis to examine the genetic basis of resistance to M. citrifolia fruit toxin in interspecific hybrids. We find that at least four dominant and four recessive loci interact additively to confer resistance to the M. citrifolia fruit toxin. These QTL include a dominant locus of large effect on the third chromosome (QTL-IIIsima) that was not detected in previous analyses. The small-effect loci that we identify overlap with regions that were identified in selection experiments with D. simulans on octanoic acid and in QTL analyses of adult resistance to octanoic acid. Our high-resolution analysis sheds new light upon the complexity of M. citrifolia resistance, and suggests that partial resistance to lower levels of M. citrifolia toxin could be passed through introgression from D. sechellia to D. simulans in nature. The identification of a locus of major effect, QTL-IIIsima, is an important step towards identifying the molecular basis of host plant specialization by D. sechellia.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 528 ◽  
Author(s):  
Madeline Burns ◽  
Frederick Cavallaro ◽  
Julia Saltz

Decision making is involved in many behaviors contributing to fitness, such as habitat choice, mate selection, and foraging. Because of this, high decision-making accuracy (i.e., selecting the option most beneficial for fitness) should be under strong selection. However, decision making is energetically costly, often involving substantial time and energy to survey the environment to obtain high-quality information. Thus, for high decision making accuracy to evolve, its benefits should outweigh its costs. Inconsistency in the net benefits of decision making across environments is hypothesized to be an important means for maintaining variation in this trait. However, very little is known about how environmental factors influence the evolution of decision making to produce variation among individuals, genotypes, and species. Here, we compared two recently diverged species of Drosophila differing substantially in habitat breadth and degree of environmental predictability and variability: Drosophila sechellia and Drosophila simulans. We found that the species evolving under higher environmental unpredictability and variability showed higher decision-making accuracy, but not higher environmental sampling.


2001 ◽  
Vol 78 (3) ◽  
pp. 225-233 ◽  
Author(s):  
CORBIN D. JONES

The larvae of Drosophila sechellia are highly resistant to octanoic acid, a toxin found in D. sechellia's host plant, Morinda citrifolia. In contrast, close relatives of D. sechellia, D. simulans and D. melanogaster, are not resistant. In a series of interspecific backcrosses, 11 genetic markers were used to map factors affecting egg-to-adult (‘larval’) resistance in D. sechellia. The third chromosome harbours at least one partially dominant resistance factor. The second chromosome carries at least two mostly dominant resistance factors but no recessive factors. However, neither the X chromosome – which contains 20% of D. sechellia's genome – nor the fourth chromosome appear to affect resistance. These data suggest that larval resistance to Morinda toxin may involve only a handful of genes. These results, when compared with a previous analysis of adult resistance to Morinda toxin in D. sechellia, suggest that larval resistance may involve a subset of the genes underlying adult resistance.


1991 ◽  
Vol 57 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Jerry A. Coyne ◽  
John Rux ◽  
Jean R. David

SummaryWe conducted classical genetic analysis of the difference in male genitalia and hybrid sterility between the island-dwelling sibling species Drosophila sechellia and D. mauritiana. At least two loci (one on each autosome) are responsible for the genital difference, with the X chromosome having no significant effect. In contrast, male hybrid sterility is caused by at least four gene loci distributed among all major chromosomes, with those on the X chromosome having the largest effect.We also show that the large difference in ovariole number between D. sechellia and its mainland relative D. simulans is due to at least two gene substitutions, one on each major autosome. The X and the left arm of the second chromosome, however, have no significant effect on the character. This implies that the evolution of reduced ovariole number involved relatively few gene substitutions.These results extend previous findings that morphological differences between Drosophila species are caused by genes distributed among all chromosomes, while hybrid sterility and inviability are due primarily to X-linked genes. Because strong X-effects on male sterility have been found in all three pairwise hybridizations among D. simulans, D. sechellia and D. mauritiana, these effects must have evolved at least twice independently.


2019 ◽  
Author(s):  
Chloe Heys ◽  
Adam M Fisher ◽  
Andrea D Dewhurst ◽  
Zenobia Lewis ◽  
Anne Lize

Adaptation to a novel food source can have significant evolutionary advantages. The fruit fly, Drosophila sechellia, is a specialist of the toxic plant noni (Morinda citrifolia). Little is known as to how D. sechellia has become resistant to the toxins in the fruit - comprised predominantly of octanoic acid - but to date, the behavioural preferences for the fruit and genetic architecture underlying them, have been well studied. Here, we examine whether the gut microbiota could have played a role in adaptation to the fruit. In the first series of experiments, we examine the gut microbiota of wild-type, laboratory reared flies and characterise the gut microbiota when reared on the natural host plant, versus a standard Drosophila diet. We show a rapid transition in the core bacterial diversity and abundance within this species and discover sole precedence of Lactobacillus plantarum when reared on M. citrifolia. We also discover that flies reared on a laboratory diet are more likely to carry bacterial pathogens such as Bacillus cereus, although their function in Drosophila is unknown. Flies reared on a laboratory diet have a significantly reduced weight but with no impact on the risk of death before adulthood, when compared to the wild noni diet. In the second series of experiments, we examine the potential role of the gut microbiota in adaptation to octanoic acid resistance in this species and its sister species, Drosophila melanogaster, to which the fruit is usually fatal. We use a combination of methods to analyse resistance to octanoic acid by conducting life history analysis, behavioural assays and bacterial analysis in both D. sechellia and D. melanogaster. We find that by creating experimental evolution lines of D. melanogaster supplemented with gut microbiota from D. sechellia, we can decrease D. melanogaster aversion to octanoic acid, with the flies even preferring to feed on food supplemented with the acid. We suggest this represents the first step in the evolutionary and ecological specialisation of D. sechellia to its toxic host plant, and that the gut microbiota, Lactobacillus plantarum in particular, may have played a key role in host specialisation.


Sign in / Sign up

Export Citation Format

Share Document