environmental predictability
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Hanna ten Brink ◽  
Thomas Ray Haaland ◽  
Oystein Hjorthol Opedal

The common occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials, and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary numerical and evolutionary simulation models of within- and among-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with density dependence, life-history traits, and priority effects due to competitive differences among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that two distinct germination strategies can evolve and coexist through negative frequency-dependent selection. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


Author(s):  
Christophe Pélabon ◽  
Francesca De Giorgi ◽  
Øystein H. Opedal ◽  
Geir H. Bolstad ◽  
Astrid Raunsgard ◽  
...  

AbstractWithin-plant variation in seed size may merely reflect developmental instability, or it may be adaptive in facilitating diversifying bet-hedging, that is, production of phenotypically diverse offspring when future environments are unpredictable. To test the latter hypothesis, we analyzed patterns of variation in seed size in 11 populations of the perennial vine Dalechampia scandens grown in a common greenhouse environment. We tested whether population differences in the mean and variation of seed size covaried with environmental predictability at two different timescales. We also tested whether within-plant variation in seed size was correlated with independent measures of floral developmental instability and increased under stressful conditions. Populations differed genetically in the amount of seed-size variation occurring among plants, among infructescences within plants, and among seeds within infructescences. Within-individual variation was not detectably correlated with measures of developmental instability and did not increase under stress, but it increased weakly with short-term environmental unpredictability of precipitation at the source-population site. These results support the hypothesis that greater variation in seed size is adaptive when environmental predictability is low.


2020 ◽  
Author(s):  
Nora Huang ◽  
siyang luo

Dishonest behavior can be driven by both self-interest and social learning towards the external environment. However, whether and how these two processes (conformity-driven and self-interest-driven dishonesty) relate and interact to influence dishonest acts remains unknown. In the current research, we propose a computational model consisting of these two dishonesty processes. The results of the agent-based simulation modeling and experimental studies revealed that self-interest driven-dishonesty propensity determined the extent of dishonesty when one was in pursuit of self-interests, while the effect of dishonesty conformity on dishonesty was dependent on both the self and environmental dishonesty propensity. In addition, self-interest-driven dishonesty propensity was related to individuals’ preference for value allocation, while dishonesty conformity was related to the belief in environmental predictability. In cross-cultural contexts, these two processes of dishonesty exert distinct effects on participants’ tendency to violate the regulation rules of the local government and impacted the development of the local prevalence of pathogens during the COVID-19 epidemic. The results of the current in-depth research validate the processes of conformity-driven and self-interest-driven dishonesty when dishonest behaviors emerged and to uncover how these two processes influenced the progression of a real-life emergent event.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eva Tarazona ◽  
J. Ignacio Lucas-Lledó ◽  
María José Carmona ◽  
Eduardo M. García-Roger

AbstractIn unpredictable environments in which reliable cues for predicting environmental variation are lacking, a diversifying bet-hedging strategy for diapause exit is expected to evolve, whereby only a portion of diapausing forms will resume development at the first occurrence of suitable conditions. This study focused on diapause termination in the rotifer Brachionus plicatilis s.s., addressing the transcriptional profile of diapausing eggs from environments differing in the level of predictability and the relationship of such profiles with hatching patterns. RNA-Seq analyses revealed significant differences in gene expression between diapausing eggs produced in the laboratory under combinations of two contrasting selective regimes of environmental fluctuation (predictable vs unpredictable) and two different diapause conditions (passing or not passing through forced diapause). The results showed that the selective regime was more important than the diapause condition in driving differences in the transcriptome profile. Most of the differentially expressed genes were upregulated in the predictable regime and mostly associated with molecular functions involved in embryo morphological development and hatching readiness. This was in concordance with observations of earlier, higher, and more synchronous hatching in diapausing eggs produced under the predictable regime.


2020 ◽  
Author(s):  
Christelle Leung ◽  
Marie Rescan ◽  
Daphné Grulois ◽  
Luis-Miguel Chevin

AbstractPhenotypic plasticity is a prominent mechanism for coping with variable environments, and a key determinant of extinction risk. Evolutionary theory predicts that phenotypic plasticity should evolve to lower levels in environments that fluctuate less predictably, because they induce mismatches between plastic responses and selective pressures. However this prediction is difficult to test in nature, where environmental predictability is not controlled. Here, we exposed 32 lines of the halotolerant microalga Dunaliella salina to ecologically realistic, randomly fluctuating salinity, with varying levels of predictability, for 500 generations. We found that morphological plasticity evolved to lower levels in lines that experienced less predictable environments. Evolution of plasticity mostly concerned phases with slow population growth, rather than the exponential phase where microbes are typically phenotyped. This study underlines that long-term experiments with complex patterns of environmental change are needed to test theories about population responses to altered environmental predictability, as currently observed under climate change.


2020 ◽  
Author(s):  
Martí March-Salas ◽  
Guillermo Fandos ◽  
Patrick S Fitze

Abstract Background and Aims It is widely accepted that changes in the environment affect mean trait expression, but little is known about how the environment shapes intra-individual and intra-population variance. Theory suggests that intra-individual variance might be plastic and under natural selection, rather than reflecting developmental noise, but evidence for this hypothesis is scarce. Here, we experimentally tested whether differences in intrinsic environmental predictability affect intra-individual and intra-population variability of different reproductive traits, and whether intra-individual variability is under selection. Methods Under field conditions, we subjected Onobrychis viciifolia to more and less predictable precipitation over 4 generations and 4 years. We analysed effects on the coefficient of intra-individual variation (CVi-i) and the coefficient of intra-population variation (CVi-p), assessed whether the coefficients of intra-individual variation (CsVi-i) are under natural selection and tested for transgenerational responses (ancestor environmental effects on offspring). Key Results Less predictable precipitation led to higher CsVi-i and CsVi-p, consistent with plastic responses. The CsVi-i of all studied traits were under consistent stabilizing selection, and precipitation predictability affected the strength of selection and the location of the optimal CVi-i of a single trait. All CsVi-i differed from the optimal CVi-i and the maternal and offspring CsVi-i were positively correlated, showing that there was scope for change. Nevertheless, no consistent transgenerational effects were found in any of the three descendant generations, which contrasts with recent studies that detected rapid transgenerational responses in the trait means of different plant species. This suggests that changes in intra-individual variability take longer to evolve than changes in trait means, which may explain why high intra-individual variability is maintained, despite the stabilizing selection. Conclusions The results indicate that plastic changes of intra-individual variability are an important determinant of whether plants will be able to cope with changes in environmental predictability induced by the currently observed climatic change.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 528 ◽  
Author(s):  
Madeline Burns ◽  
Frederick Cavallaro ◽  
Julia Saltz

Decision making is involved in many behaviors contributing to fitness, such as habitat choice, mate selection, and foraging. Because of this, high decision-making accuracy (i.e., selecting the option most beneficial for fitness) should be under strong selection. However, decision making is energetically costly, often involving substantial time and energy to survey the environment to obtain high-quality information. Thus, for high decision making accuracy to evolve, its benefits should outweigh its costs. Inconsistency in the net benefits of decision making across environments is hypothesized to be an important means for maintaining variation in this trait. However, very little is known about how environmental factors influence the evolution of decision making to produce variation among individuals, genotypes, and species. Here, we compared two recently diverged species of Drosophila differing substantially in habitat breadth and degree of environmental predictability and variability: Drosophila sechellia and Drosophila simulans. We found that the species evolving under higher environmental unpredictability and variability showed higher decision-making accuracy, but not higher environmental sampling.


2020 ◽  
Vol 287 (1926) ◽  
pp. 20200622
Author(s):  
Silke Bauer ◽  
John M. McNamara ◽  
Zoltan Barta

The timing of migration and migratory steps is highly relevant for fitness. Because environmental conditions vary between years, the optimal time for migration varies accordingly. Therefore, migratory animals could clearly benefit from acquiring information as to when it is the best time to migrate in a specific year. Thus, environmental predictability and variability are fundamental characteristics of migration systems but their relationship and consequence for migratory progression has remained unexplored. We develop a simple dynamic model to identify the optimal migration behaviour in environments that differ in predictability, variability and the number of intermediate stop-over sites. Our results indicate that higher predictability along migration routes enables organisms to better time migration when phenology deviates from its long-term average and thus, increases fitness. Information is particularly valuable in highly variable environments and in the final migration-step, i.e. before the destination. Furthermore, we show that a general strategy for obtaining information in relatively uninformative but variable environments is using intermediate stop-over sites that enable migrants to better predict conditions ahead. Our study contributes to a better understanding of the relationship between animal movement and environmental predictability—an important, yet underappreciated factor that strongly influences migratory progression.


2020 ◽  
Author(s):  
P. K. Rowiński ◽  
W. Sowersby ◽  
J. Näslund ◽  
S. Eckerström-Liedholm ◽  
K. Gotthard ◽  
...  

ABSTRACTComparative evidence suggests that adaptive plasticity may evolve as a response to predictable environmental variation. However, less attention has been placed on unpredictable environmental variation, which is considered to affect evolutionary trajectories by increasing phenotypic variation (or bet-hedging). Here, we examine the occurrence of bet-hedging in egg developmental rates in seven species of annual killifish, which originate from a gradient of variation in precipitation rates, under three treatment incubation temperatures (21°C, 23°C, and 25°C). In the wild, these species survive regular and seasonal habitat desiccation, as dormant eggs buried in the soil. At the onset of the rainy season, embryos must be sufficiently developed in order to hatch and complete their life-cycle. We found substantial differences among species in both the mean and variation of egg development rates, as well as species-specific plastic responses to incubation temperature. Yet, there was no clear relationship between variation in egg development time and variation in precipitation rate (environmental predictability). The exact cause of these differences therefore remains enigmatic, possibly depending on differences in other natural environmental conditions in addition to precipitation predictability. Hence, if species-specific variances are adaptive, the relationship between development and variation in precipitation is complex, and does not diverge in accordance with simple linear relationships.


Sign in / Sign up

Export Citation Format

Share Document