scholarly journals De Novo Genome Assembly of Populus simonii Further Supports That Populus simonii and Populus trichocarpa Belong to Different Sections

2019 ◽  
Vol 10 (2) ◽  
pp. 455-466
Author(s):  
Hainan Wu ◽  
Dan Yao ◽  
Yuhua Chen ◽  
Wenguo Yang ◽  
Wei Zhao ◽  
...  

Populus simonii is an important tree in the genus Populus, widely distributed in the Northern Hemisphere and having a long cultivation history. Although this species has ecologically and economically important values, its genome sequence is currently not available, hindering the development of new varieties with wider adaptive and commercial traits. Here, we report a chromosome-level genome assembly of P. simonii using PacBio long-read sequencing data aided by Illumina paired-end reads and related genetic linkage maps. The assembly is 441.38 Mb in length and contain 686 contigs with a contig N50 of 1.94 Mb. With the linkage maps, 336 contigs were successfully anchored into 19 pseudochromosomes, accounting for 90.2% of the assembled genome size. Genomic integrity assessment showed that 1,347 (97.9%) of the 1,375 genes conserved among all embryophytes can be found in the P. simonii assembly. Genomic repeat analysis revealed that 41.47% of the P. simonii genome is composed of repetitive elements, of which 40.17% contained interspersed repeats. A total of 45,459 genes were predicted from the P. simonii genome sequence and 39,833 (87.6%) of the genes were annotated with one or more related functions. Phylogenetic analysis indicated that P. simonii and Populus trichocarpa should be placed in different sections, contrary to the previous classification according to morphology. The genome assembly not only provides an important genetic resource for the comparative and functional genomics of different Populus species, but also furnishes one of the closest reference sequences for identifying genomic variants in an F1 hybrid population derived by crossing P. simonii with other Populus species.

Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1359
Author(s):  
Esther Camacho ◽  
Sandra González-de la Fuente ◽  
Jose C. Solana ◽  
Alberto Rastrojo ◽  
Fernando Carrasco-Ramiro ◽  
...  

Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent, and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions were reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation was improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regard, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.


Author(s):  
David Porubsky ◽  
◽  
Peter Ebert ◽  
Peter A. Audano ◽  
Mitchell R. Vollger ◽  
...  

AbstractHuman genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 69 ◽  
Author(s):  
Nagesh Kancharla ◽  
Saakshi Jalali ◽  
J. Narasimham ◽  
Vinod Nair ◽  
Vijay Yepuri ◽  
...  

Jatropha curcas is an important perennial, drought tolerant plant that has been identified as a potential biodiesel crop. We report here the hybrid de novo genome assembly of J. curcas generated using Illumina and PacBio sequencing technologies, and identification of quantitative loci for Jatropha Mosaic Virus (JMV) resistance. In this study, we generated scaffolds of 265.7 Mbp in length, which correspond to 84.8% of the gene space, using Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis. Additionally, 96.4% of predicted protein-coding genes were captured in RNA sequencing data, which reconfirms the accuracy of the assembled genome. The genome was utilized to identify 12,103 dinucleotide simple sequence repeat (SSR) markers, which were exploited in genetic diversity analysis to identify genetically distinct lines. A total of 207 polymorphic SSR markers were employed to construct a genetic linkage map for JMV resistance, using an interspecific F2 mapping population involving susceptible J. curcas and resistant Jatropha integerrima as parents. Quantitative trait locus (QTL) analysis led to the identification of three minor QTLs for JMV resistance, and the same has been validated in an alternate F2 mapping population. These validated QTLs were utilized in marker-assisted breeding for JMV resistance. Comparative genomics of oil-producing genes across selected oil producing species revealed 27 conserved genes and 2986 orthologous protein clusters in Jatropha. This reference genome assembly gives an insight into the understanding of the complex genetic structure of Jatropha, and serves as source for the development of agronomically improved virus-resistant and oil-producing lines.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e62856 ◽  
Author(s):  
Yen-Chun Chen ◽  
Tsunglin Liu ◽  
Chun-Hui Yu ◽  
Tzen-Yuh Chiang ◽  
Chi-Chuan Hwang

2021 ◽  
Vol 10 (32) ◽  
Author(s):  
A. O. Izotova ◽  
K. O. Petrova ◽  
A. A. Korzhenkov ◽  
A. A. Bavtushnyi ◽  
K. V. Sidoruk ◽  
...  

Acinetobacter pittii strain B-3780 is a prospective degrader of oil and methanol, isolated from industrial wastewater. Here, we present the draft genome sequence of strain B-3780, obtained using Illumina sequencing of the fragment genomic library.


2021 ◽  
Author(s):  
Miguel A Naranjo-Ortiz ◽  
Manu Molina ◽  
Veronica Mixao ◽  
Toni Gabaldon

Recent technological developments have made genome sequencing and assembly accessible to many groups. However, the presence in sequenced organisms of certain genomic features such as high heterozygosity, polyploidy, aneuploidy, or heterokaryosis can challenge current standard assembly procedures and result in highly fragmented assemblies. Hence, we hypothesized that genome databases must contain a non-negligible fraction of low-quality assemblies that result from such type of intrinsic genomic factors. Here we present Karyon, a Python-based toolkit that uses raw sequencing data and de novo genome assembly to assess several parameters and generate informative plots to assist in the identification of non-chanonical genomic traits. Karyon includes automated de novo genome assembly and variant calling pipelines. We tested Karyon by diagnosing 35 highly fragmented publicly available assemblies from 19 different Mucorales (Fungi) species. Our results show that 6 (17%) of the assemblies presented signs of unusual genomic configurations, suggesting that these are common, at least within the Fungi.


GigaScience ◽  
2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Xuewei Li ◽  
Ling Kui ◽  
Jing Zhang ◽  
Yinpeng Xie ◽  
Liping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document