populus trichocarpa
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 195)

H-INDEX

54
(FIVE YEARS 6)

Author(s):  
Navjit Kaur ◽  
Divya Dhawal Bhandari

Numerous plants have been the subject of recent research in the pharmacological, cosmetic, and agro-alimentary domains due to their chemical composition and multiple therapeutic capabilities. Populus trichocarpa is one of the most common trees found in deciduous forests (Salicaceae family). The current study examines Populus trichocarpa as a model plant for plant genomics research, as well as the most recent findings on phytochemical composition and medicinal potential. More than 45,000 potential protein-coding genes were discovered. In the Populus genome, a whole-genome duplication event was discovered, with approximately 8,000 pairs of duplicated genes surviving. Furthermore, the reproductive biology of Populus provides new opportunities and challenges in the study and analysis of natural genetic and phenotypic variation. In the present review, we endeavour to describe and compile the available knowledge on Populus trichocarpa as a model plant for genomic investigations and to bring that material up to date of Populus trichocarpa's phytochemical and medicinal properties.


Author(s):  
Andrzej Antczak ◽  
Jan Szadkowski ◽  
Dominika Szadkowska ◽  
Janusz Zawadzki

AbstractIn this paper, the influence of physicochemical pretreatment methods on the chemical composition, enzymatic hydrolysis efficiency and porosity of fast-growing Populus trichocarpa wood was compared. Among the pretreatment methods, the liquid hot water (LHW) and steam explosion (SE) were used, which were performed at three different temperatures (160 °C, 175 °C and 190 °C) and two residence times (15 min and 1 h). The chemical composition, enzymatic hydrolysis and porosity analysis were done for native wood and solid fraction obtained after LHW and SE pretreatments. The porosity analysis was performed by inverse size exclusion chromatography method. Additionally, inhibitors of hydrolysis and fermentation processes in the liquid and solid fractions obtained after pretreatments were examined. Based on the results, it was found that the tested pretreatments caused the greatest changes in the chemical content of hemicelluloses. It was found that after LHW and SE pretreatments up to 99.1% or 94.0%, respectively, of hemicelluloses were removed from the obtained solid fraction. Moreover, the LHW and SE processes greatly enhanced the enzymatic digestibility of fast-growing poplar wood. The highest glucose yield was achieved after 15 min of SE pretreatment at 190 °C and was 676.4 mg/g pretreated biomass, while in the case of xylose the highest value (119.3 mg/g pretreated biomass) was obtained after 15 min of LHW pretreatment at 160 °C. Generally, after SE pretreatment process, more inhibitors were formed, and a greater effect of porous structure development was noticed than after LHW pretreatment. Despite this difference, the average glucose contents and yields after enzymatic hydrolysis of pretreated biomass were generally similar regardless of the pretreatment used.


Plant Science ◽  
2021 ◽  
pp. 111170
Author(s):  
Mengxuan Ren ◽  
Yang Zhang ◽  
Ruiqi Wang ◽  
Yingying Liu ◽  
Meiliang Li ◽  
...  

Gene ◽  
2021 ◽  
pp. 146106
Author(s):  
Yangang Lan ◽  
Kaimei Zhang ◽  
Yamei Wang ◽  
Jing Wu ◽  
Miao Lin ◽  
...  

2021 ◽  
Vol 7 (12) ◽  
pp. 1024
Author(s):  
Fengxin Dong ◽  
Yihan Wang ◽  
Ming Tang

Poplars can be harmed by poplar canker. Inoculation with mycorrhizal fungi can improve the resistance of poplars to canker, but the molecular mechanism is still unclear. In this study, an aseptic inoculation system of L. bicolor–P. trichocarpa–B. dothidea was constructed, and transcriptome analysis was performed to investigate regulation by L. bicolor of the expression of genes in the roots of P. trichocarpa during the onset of B. dothidea infection, and a total of 3022 differentially expressed genes (DEGs) were identified. Weighted correlation network analysis (WGCNA) was performed on these DEGs, and 661 genes’ expressions were considered to be affected by inoculation with L. bicolor and B. dothidea. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that these 661 DEGs were involved in multiple pathways such as signal transduction, reactive oxygen metabolism, and plant-pathogen interaction. Inoculation with L. bicolor changed the gene expression pattern of the roots, evidencing its involvement in the disease resistance response of P. trichocarpa. This research reveals the mechanism of L. bicolor in inducing resistance to canker of P. trichocarpa at the molecular level and provides a theoretical basis for the practical application of mycorrhizal fungi to improve plant disease resistance.


2021 ◽  
Vol 22 (23) ◽  
pp. 12637
Author(s):  
Xiatong Liu ◽  
Lijie Mo ◽  
Xiaorui Guo ◽  
Qiang Zhang ◽  
Hui Li ◽  
...  

In higher plants, seed storage proteins are deposited in protein storage vacuoles (PSVs) and degraded by protease, especially cysteine proteases, as a source of nitrogen for seed germination. In this study, a cathepsin B-like cysteine protease PtCP5, which is important for seed germination and pollen development, was first cloned in Populus trichocarpa. The GUS staining of the ProPtCP5-GUS reporter line showed that PtCP5 is expressed in the roots, stems, leaves, flowers, siliques and seeds of Arabidopsis. We reveal that PtCP5 is present in plasma membrane and co-localizes with the plasma membrane marker REM1.3. Both seed germination and early seedling development are slower in OX-PtCP5 transgenic Arabidopsis when compared with the wild-type. Further analysis revealed that, when stained with toluidine blue, the observed storage protein accumulation was lower in OX-PtCP5 than in the wild-type. Our results also show that the number of abnormal pollen grains is higher and the germination rate of pollen is lower in OX-PtCP5 than in the wild-type. These results indicate that PtCP5 is an important factor in mobilizing storage proteins and that the proper expression of PtCP5 is necessary for both pollen and seed maturation and germination. This study sheds further light on the biological functions of cysteine proteases and provides further reference for seed development research on woody plants.


2021 ◽  
Vol 22 (22) ◽  
pp. 12336
Author(s):  
Shuo Han ◽  
Zhiyin Jiao ◽  
Meng-Xue Niu ◽  
Xiao Yu ◽  
Mengbo Huang ◽  
...  

Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui-Ling Liao ◽  
Gregory Bonito ◽  
Khalid Hameed ◽  
Steven H. Wu ◽  
Ko-Hsuan Chen ◽  
...  

Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor’s microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2284
Author(s):  
Jing Hou ◽  
Yan Sun ◽  
Lei Wang ◽  
Yuanzhong Jiang ◽  
Ningning Chen ◽  
...  

Homeobox (HB) genes play critical roles in the regulation of plant morphogenesis, growth and development. Here, we identified a total of 156 PtrHB genes from the Populus trichocarpa genome. According to the topologies and taxonomy of the phylogenetic tree constructed by Arabidopsis thaliana HB members, all PtrHB proteins were divided into six subgroups, namely HD-ZIP, ZF-HD, HB-PHD, TALE, WOX and HB-OTHERS. Multiple alignments of conserved homeodomains (HDs) revealed the conserved loci of each subgroup, while gene structure analysis showed similar exon–intron gene structures, and motif analysis indicated the similarity of motif number and pattern in the same subgroup. Promoter analysis indicated that the promoters of PtrHB genes contain a series of cis-acting regulatory elements involved in responding to various abiotic stresses, indicating that PtrHBs had potential functions in these processes. Collinearity analysis revealed that there are 96 pairs of 127 PtrHB genes mainly distributing on Chromosomes 1, 2, and 5. We analyzed the spatio-temporal expression patterns of PtrHB genes, and the virus-induced gene silencing (VIGS) of PtrHB3 gene resulted in the compromised tolerance of poplar seedlings to mannitol treatment. The bioinformatics on PtrHB family and preliminary exploration of drought-responsive genes can provide support for further study of the family in woody plants, especially in drought-related biological processes. It also provides a direction for developing new varieties of poplar with drought resistance. Overall, our results provided significant information for further functional analysis of PtrHB genes in poplar and demonstrated that PtrHB3 is a dominant gene regulating tolerance to water stress treatment in poplar seedlings.


Sign in / Sign up

Export Citation Format

Share Document