scholarly journals Asymmetric Fitness of Second-Generation Interspecific Hybrids Between Ciona robusta and Ciona intestinalis

2020 ◽  
Vol 10 (8) ◽  
pp. 2697-2711
Author(s):  
Naoyuki Ohta ◽  
Nicole Kaplan ◽  
James Tyler Ng ◽  
Basile Jules Gravez ◽  
Lionel Christiaen

Reproductive isolation is central to speciation, but interspecific crosses between two closely related species can produce viable and fertile hybrids. Two different species of tunicates in the same ascidian genus, Ciona robusta and Ciona intestinalis, can produce hybrids. However, wild sympatric populations display limited gene flow, suggesting the existence of obstacles to interspecific reproduction that remain unknown. Here, we took advantage of a closed culture system to cross C. robusta with C. intestinalis and established F1 and F2 hybrids. We monitored post-embryonic development, survival, and sexual maturation to characterize the genetic basis of simple traits, and further probe the physiological mechanisms underlying reproductive isolation. Partial viability of first and second generation hybrids suggested that both pre- and postzygotic mechanisms contributed to genomic incompatibilities in hybrids. We observed asymmetric fitness, whereby the C. intestinalis maternal lines fared more poorly in our system, pointing to maternal origins of species-specific sensitivity. We discuss the possibility that asymmetrical second generation inviability and infertility emerge from interspecific incompatibilities between the nuclear and mitochondrial genomes, or other maternal effect genes. This work paves the way to quantitative genetic approaches to study the mechanisms underlying genomic incompatibilities and other complex traits in the genome-enabled Ciona model.

2020 ◽  
Author(s):  
Naoyuki Ohta ◽  
Nicole Kaplan ◽  
James Tyler Ng ◽  
Basile Jules Gravez ◽  
Lionel Christiaen

AbstractReproductive isolation is central to speciation, but interspecific crosses between two closely related species can produce viable and fertile hybrids. Two different species in the tunicate genus Ciona, Ciona robusta and Ciona intestinalis can produce hybrids. However, wild sympatric populations display limited gene flow, suggesting the existence of obstacles to interspecific reproduction that remain unknown. Here, we took advantage of a closed inland culture system to cross C. robusta with C. intestinalis and established F1 and F2 hybrids. We monitored post-embryonic development, survival, and sexual maturation to further probe the physiological mechanisms underlying reproductive isolation. Partial viability of first and second generation hybrids indicated that both pre- and postzygotic mechanisms contributed to genomic incompatibilities in hybrids. Asymmetrical second generation inviability and infertility suggested that interspecific genomic incompatibilities involved interactions between the maternal, zygotic and mitochondrial genomes during development. This study paves the way to quantitative genetic approaches to study the mechanisms underlying genomic incompatibilities and other complex traits in the genome-enabled Ciona model.


1980 ◽  
Vol 112 (2) ◽  
pp. 113-117 ◽  
Author(s):  
P. E. A. Teal ◽  
J. R. Byers

AbstractThe calling behavior of females of three interfertile sibling species of Euxoa was studied in the laboratory at 20°, 15°, 10°, and 5 °C. At 20 °C the calling posture of E. campestris and E. rockburnei differs from that of E. declarata. However, with decreasing temperatures the calling posture of both campestris and rockburnei becomes indistinguishable from that of declarata. The pattern and duration of calling bouts was similar in all three species and at all four temperatures. Calling occurred progressively earlier in scotophase as temperature decreased but temporal separation between the calling periods of the three species is maintained at all temperatures above the threshold for mating activity. This confirms that temporal separation of mating persists over the range of temperature normally encountered in nature and strengthens the evidence that species-specific rhythms of mating activity are largely responsible for maintaining reproductive isolation between sympatric populations of these species.


Sign in / Sign up

Export Citation Format

Share Document