BIOSYSTEMATICS OF THE GENUS EUXOA (LEPIDOPTERA: NOCTUIDAE): XIV. EFFECT OF TEMPERATURE ON FEMALE CALLING BEHAVIOR AND TEMPORAL PARTITIONING IN THREE SIBLING SPECIES OF THE DECLARATA GROUP

1980 ◽  
Vol 112 (2) ◽  
pp. 113-117 ◽  
Author(s):  
P. E. A. Teal ◽  
J. R. Byers

AbstractThe calling behavior of females of three interfertile sibling species of Euxoa was studied in the laboratory at 20°, 15°, 10°, and 5 °C. At 20 °C the calling posture of E. campestris and E. rockburnei differs from that of E. declarata. However, with decreasing temperatures the calling posture of both campestris and rockburnei becomes indistinguishable from that of declarata. The pattern and duration of calling bouts was similar in all three species and at all four temperatures. Calling occurred progressively earlier in scotophase as temperature decreased but temporal separation between the calling periods of the three species is maintained at all temperatures above the threshold for mating activity. This confirms that temporal separation of mating persists over the range of temperature normally encountered in nature and strengthens the evidence that species-specific rhythms of mating activity are largely responsible for maintaining reproductive isolation between sympatric populations of these species.


1985 ◽  
Vol 117 (4) ◽  
pp. 481-493 ◽  
Author(s):  
J.R. Byers ◽  
D.L. Struble ◽  
J.D. Lafontaine

AbstractThe species previously recognized as Euxoa ridingsiana (Grt.) is shown to be composed of a sympatric pair of sibling species, Euxoa ridingsiana (Grt.) and Euxoa maimes (Sm.), which in the laboratory will produce viable F1 hybrids but no F2. Results of F1 sib and backcrosses show that the F1 males are fertile and the F1 females are infertile. In mating-bias tests conducted in laboratory cages, 74% of matings were conspecific and 26% interspecific. Differences in the diel periodicities of mating, which are about 2 h out of phase, may account for the mating bias. The duration of development of E. ridingsiana in the laboratory and its seasonal flight period in the field are about 2 weeks in advance of that of E. maimes. However, there is considerable overlap of the flight periods and, with the tendency of females of both species to mate several times, it is unlikely that the difference in seasonal emergence is enough to effect reproductive isolation. It is evident that, under natural conditions, reproductive isolation can be maintained entirely by species-specific sex pheromones. This mechanism of reproductive isolation is, however, apparently ineffective when moths are confined in cages in the laboratory.Biogeographic considerations suggest that the differences in life-cycle timing and mating periodicities might have been adaptations to adjust development and reproduction to prevailing ancestral environments. If the initial differentiation of the 2 species occurred in isolation and included at least an incipient shift in the pheromonal mate-recognition system, it is possible that upon reestablishment of contact between ancestral populations the differences in life-cycle timing and mating periodicities acting in concert could have effected substantial, albeit incomplete, reproductive isolation. Subsequent selection to reinforce assortative mating to preserve coadapted gene complexes could then have resulted in differentiation of discrete pheromonal systems and attainment of species status.





1992 ◽  
Vol 82 (1) ◽  
pp. 13-17 ◽  
Author(s):  
E. Dunkelblum ◽  
M. Kehat

AbstractThe sexual behaviour of Heliothis peltigera (Denis & Schiffermüller) was studied in the laboratory. Calling activity was very low during the first five hours of scotophase and then increased sharply, particularly in six-to eight-day old females. Peak activity was observed, in all ages tested, between eight and nine hours into scotophase. Calling in six-day old females was significantly higher than in two-day old females but no significant differences were detected between four-to eight-day old females. Maximal amounts of pheromone were found in the pheromone glands of five-to eight-day old females in the second half of scotophase. Male activity was monitored in a wind tunnel. There was no response to pheromone lures during the first two days, then flying activity increased sharply and maintained its high level until the eighth day. Peak activity was observed between six and eight hours into scotophase. Mating activity was very low during the first five hours of scotophase and then increased sharply, with 61.8% of the observed pairs mating between six and eight hours into scotophase. The sexual behaviour of H. peltigera was very similar to the reported behaviour of the sympatric species Helicoverpa armigera (Hübner) indicating that the reproductive separation of the two species is not affected by temporal factors, but depends mainly on the species-specific pheromone blends.



2020 ◽  
Vol 10 (8) ◽  
pp. 2697-2711
Author(s):  
Naoyuki Ohta ◽  
Nicole Kaplan ◽  
James Tyler Ng ◽  
Basile Jules Gravez ◽  
Lionel Christiaen

Reproductive isolation is central to speciation, but interspecific crosses between two closely related species can produce viable and fertile hybrids. Two different species of tunicates in the same ascidian genus, Ciona robusta and Ciona intestinalis, can produce hybrids. However, wild sympatric populations display limited gene flow, suggesting the existence of obstacles to interspecific reproduction that remain unknown. Here, we took advantage of a closed culture system to cross C. robusta with C. intestinalis and established F1 and F2 hybrids. We monitored post-embryonic development, survival, and sexual maturation to characterize the genetic basis of simple traits, and further probe the physiological mechanisms underlying reproductive isolation. Partial viability of first and second generation hybrids suggested that both pre- and postzygotic mechanisms contributed to genomic incompatibilities in hybrids. We observed asymmetric fitness, whereby the C. intestinalis maternal lines fared more poorly in our system, pointing to maternal origins of species-specific sensitivity. We discuss the possibility that asymmetrical second generation inviability and infertility emerge from interspecific incompatibilities between the nuclear and mitochondrial genomes, or other maternal effect genes. This work paves the way to quantitative genetic approaches to study the mechanisms underlying genomic incompatibilities and other complex traits in the genome-enabled Ciona model.



1992 ◽  
Vol 70 (1) ◽  
pp. 79-86 ◽  
Author(s):  
R. H. Gooding ◽  
B. M. Rolseth ◽  
J. R. Byers ◽  
C. E. Herle

Males of four "sibling species" of Feltia jaculifera, characterized by their mate-recognition system (pheromotype), were examined for electrophoretic variation. Arginine phosphokinase was monomorphic but 14 other enzymes and 1 protein were polymorphic in one or more populations. No locus was diagnostic for any pheromotype. Mean heterozygosity per locus varied from 21 ± 7.8% to 26.7 ± 6.7%, the effective number of alleles per locus varied from 2.19 ± 0.43 to 3.44 ± 0.59, and from 4 to 11 loci were polymorphic in each population. Phenograms indicate that pheromotypes A, B, and D are genetically similar, whilst pheromotype C is distinctly different. Allele frequencies, FST values, and the large percentage (34–43%) of private alleles in sympatric populations of the pheromotypes indicate a genetic substructuring of the nominal species. However, the level of genetic differentiation among pheromotypes A, B, and D is well below that characteristic of sibling species. Nm values suggest that there is sufficient interbreeding between sympatric populations of pheromotypes A and B to preclude genetic differentiation due to drift. The evidence indicates that discrete mate-recognition systems can be achieved without much allozymic differentiation and can be maintained in spite of significant gene flow.



2000 ◽  
Vol 132 (6) ◽  
pp. 877-887 ◽  
Author(s):  
B.S. Lindgren ◽  
S.E.R. Hoover ◽  
A.M. MacIsaac ◽  
C.I. Keeling ◽  
K.N. Slessor

AbstractThe effects of lineatin enantiomer ratios, lineatin release rate, and trap length on catches and the flight periods of three sympatric species of Trypodendron Stephens were investigated in field bioassays using multiple-funnel traps. The ambrosia beetle, Trypodendron betulae Swaine, was caught in similar numbers in baited traps and blank control traps, showing that this species does not respond to lineatin. Our results confirmed that Trypodendron lineatum (Olivier) is attracted only to (+)-lineatin. Trypodendron rufitarsus (Kirby) and Trypodendron retusum (LeConte) were shown to utilize lineatin and like T. lineatum were caught only when (+)-lineatin was present. These results indicate that lineatin does not govern reproductive isolation among these three species. There was no effect by (+)-lineatin release rate within the range tested. The flight of T. rufitarsus commenced earlier and ceased before the peak of the T. lineatum flight, suggesting that temporal separation may be an important component of reproductive isolation between these two species. The flight period of T. retusum was similar to that of T. lineatum. Host odours may aid in reproductive isolation of these two species. Enantiomer blend did not significantly affect sex ratio in any species; however, sex ratio differed among species, indicating that different species responded differently to the traps or that natural sex ratios differ. Catches of T. rufitarsus and T. retusum increased with trap length when pheromone release per trap was held constant and when release was held constant relative to trap length. Trap length and release rate did not affect sex ratio.



2012 ◽  
Vol 105 (3) ◽  
pp. 964-970 ◽  
Author(s):  
Asim Gulzar ◽  
Brian Pickett ◽  
Ali H. Sayyed ◽  
Denis J. Wright


2002 ◽  
Vol 357 (1420) ◽  
pp. 471-492 ◽  
Author(s):  
Michele Drès ◽  
James Mallet

The existence of a continuous array of sympatric biotypes—from polymorphisms, through ecological or host races with increasing reproductive isolation, to good species—can provide strong evidence for a continuous route to sympatric speciation via natural selection. Host races in plant–feeding insects, in particular, have often been used as evidence for the probability of sympatric speciation. Here, we provide verifiable criteria to distinguish host races from other biotypes: in brief, host races are genetically differentiated, sympatric populations of parasites that use different hosts and between which there is appreciable gene flow. We recognize host races as kinds of species that regularly exchange genes with other species at a rate of more than ca . 1% per generation, rather than as fundamentally distinct taxa. Host races provide a convenient, although admittedly somewhat arbitrary intermediate stage along the speciation continuum. They are a heuristic device to aid in evaluating the probability of speciation by natural selection, particularly in sympatry. Speciation is thereby envisaged as having two phases: (i) the evolution of host races from within polymorphic, panmictic populations; and (ii) further reduction of gene flow between host races until the diverging populations can become generally accepted as species. We apply this criterion to 21 putative host race systems. Of these, only three are unambiguously classified as host races, but a further eight are strong candidates that merely lack accurate information on rates of hybridization or gene flow. Thus, over one–half of the cases that we review are probably or certainly host races, under our definition. Our review of the data favours the idea of sympatric speciation via host shift for three major reasons: (i) the evolution of assortative mating as a pleiotropic by–product of adaptation to a new host seems likely, even in cases where mating occurs away from the host; (ii) stable genetic differences in half of the cases attest to the power of natural selection to maintain multilocus polymorphisms with substantial linkage disequilibrium, in spite of probable gene flow; and (iii) this linkage disequilibrium should permit additional host adaptation, leading to further reproductive isolation via pleiotropy, and also provides conditions suitable for adaptive evolution of mate choice (reinforcement) to cause still further reductions in gene flow. Current data are too sparse to rule out a cryptic discontinuity in the apparently stable sympatric route from host–associated polymorphism to host–associated species, but such a hiatus seems unlikely on present evidence. Finally, we discuss applications of an understanding of host races in conservation and in managing adaptation by pests to control strategies, including those involving biological control or transgenic parasite–resistant plants.



Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 849-852 ◽  
Author(s):  
B. N. Singh ◽  
Sujata Chatterjee

To test whether character displacement for reproductive isolation between Drosophila bipectinata and Drosophila malerkotliana exists, the degree of sexual isolation was measured between their sympatric and allopatric populations. Although the isolation indices vary in different crosses, the average isolation index for sympatric populations is very close to that for allopatric populations. This shows no difference in the degree of sexual isolation between sympatric and allopatric populations of D. bipectinata and D. malerkotliana. Thus there is no evidence for the existence of character displacement for sexual isolation between these two closely related sympatric species.Key words: Drosophila bipectinata, Drosophila malerkotliana, sexual isolation, sympatric and allopatric populations.



Sign in / Sign up

Export Citation Format

Share Document