scholarly journals Paternal Leakage and Heteroplasmy of Mitochondrial Genomes in Silene vulgaris: Evidence From Experimental Crosses

Genetics ◽  
2010 ◽  
Vol 185 (3) ◽  
pp. 961-968 ◽  
Author(s):  
Kerin E. Bentley ◽  
Jennifer R. Mandel ◽  
David E. McCauley
2017 ◽  
Author(s):  
Arunas L Radzvilavicius ◽  
Hanna Kokko ◽  
Joshua Christie

AbstractMitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller’s ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying-selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed.


2018 ◽  
Author(s):  
Helena Štorchová ◽  
James D. Stone ◽  
Daniel B. Sloan ◽  
Oushadee Abeyawardana ◽  
Karel Müller ◽  
...  

AbstractBackgroundSilene vulgaris (bladder campion) is a gynodioecious species existing as two genders – male-sterile females and hermaphrodites. Cytoplasmic male sterility (CMS) is generally encoded by mitochondrial genes, which interact with nuclear fertility restorer genes. Mitochondrial genomes of this species vary in DNA sequence, gene order and gene content. Multiple CMS genes are expected to exist in S. vulgaris, but little is known about their molecular identity.ResultsWe assembled the complete mitochondrial genome from the haplotype KRA of S. vulgaris. It consists of five chromosomes, two of which recombine with each other. Two small non-recombining chromosomes exist in linear, supercoiled and relaxed circle forms. We compared the mitochondrial transcriptomes from females and hermaphrodites and confirmed the differentially expressed chimeric gene bobt as the strongest CMS candidate gene in S. vulgaris KRA. The chimeric gene bobt is co-transcribed with the Cytochrome b (cob) gene in some genomic configurations. The co-transcription of a CMS factor with an essential gene may constrain transcription inhibition as a mechanism for fertility restoration because of the need to maintain appropriate production of the necessary protein. Homologous recombination places the gene cob outside the control of bobt, which allows for the suppression the CMS gene by the fertility restorer genes. In addition, by analyzing RNA editing, we found the loss of three editing sites in the KRA mitochondrial genome and identified four sites with highly distinct editing rates between KRA and another S. vulgaris haplotypes (KOV). Three of these highly differentially edited sites were located in the transport membrane protein B (mttB) gene. They resulted in differences in MttB protein sequences between haplotypes despite completely identical gene sequences.ConclusionsFrequent homologous recombination events that are widespread in plant mitochondrial genomes may change chromosomal configurations and also the control of gene transcription including CMS gene expression. Posttranscriptional processes, e.g RNA editing shall be evaluated in evolutionary and co-evolutionary studies of mitochondrial genes, because they may change protein composition despite the sequence identity of the respective genes. The investigation of natural populations of wild species such as S. vulgaris are necessary to reveal important aspects of CMS missed in domesticated crops, the traditional focus of the CMS studies.


Genetica ◽  
2011 ◽  
Vol 139 (11-12) ◽  
pp. 1509-1519 ◽  
Author(s):  
Angelique H. Hoolahan ◽  
Vivian C. Blok ◽  
Tracey Gibson ◽  
Mark Dowton

2016 ◽  
Vol 72 (9) ◽  
Author(s):  
Kiarash Afshar Pour Rezaeieh ◽  
Bunyamin Yildirim ◽  
Ahmet Metin Kumlay

Sign in / Sign up

Export Citation Format

Share Document