nuclear background
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 11)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lucy Anderson ◽  
M. Florencia Camus ◽  
Katy M Monteith ◽  
Tiina S. Salminen ◽  
Pedro F Vale

Mitochondria are organelles that produce cellular energy in the form of ATP through oxidative phosphorylation, and this primary function is conserved between many taxa. Locomotion is a trait that is highly reliant on metabolic function and expected to be greatly affected by disruptions to mitochondrial performance. To this end, we aimed to examine how activity and sleep vary between Drosophila melanogaster strains with different geographic origins, how these patterns are affected by mitochondrial DNA (mtDNA) variation, and how breaking up co-evolved mito-nuclear gene combinations affect the studied activity traits. The results demonstrate that Drosophila strains from different locations differ in sleep and activity, and the extent of variation differs between sexes, females in general being more active. By comparing activity and sleep of mtDNA variants introgressed onto a common nuclear background in cytoplasmic hybrid (cybrid) strains, we establish that mtDNA variation affects both traits, sex specifically. Furthermore, by using previously published mtDNA copy number data, we detected a positive correlation between mtDNA copy number and the activity levels of the cybrid flies. Altogether, our study shows that both mtDNA variation and mitonuclear interactions affect activity and sleep patterns, highlighting the important role that both genomes play on life-history trait evolution.


Author(s):  
Perran A. Ross ◽  
Xinyue Gu ◽  
Katie L. Robinson ◽  
Qiong Yang ◽  
Ellen Cottingham ◽  
...  

Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection ( w AlbB Q ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the w AlbB Q transinfection is near-identical to the reference w AlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available w AlbB genome sequences, highlighting the potential diversity of w AlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of w AlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between w AlbB infection and nuclear background for any trait. The w AlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of w AlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations. Importance Wolbachia bacteria are being used to control the transmission of dengue and other arboviruses by mosquitoes. For Wolbachia release programs to be effective globally, Wolbachia infections must be stable across mosquito populations from different locations. In this study, we transferred Wolbachia (strain w AlbB) to Aedes aegypti mosquitoes with an Australian genotype and introduced the infection to Malaysian mosquitoes through backcrossing. We found that the phenotypic effects of Wolbachia are stable across both mosquito backgrounds. We sequenced the genome of w AlbB and found very few genetic changes despite spending over 15 years in a novel mosquito host. Our results suggest that the effects of Wolbachia infections are likely to remain stable across time and host genotype.


2021 ◽  
Author(s):  
Perran A Ross ◽  
Xinyue Gu ◽  
Katie L Robinson ◽  
Qiong Yang ◽  
Ellen Cottingham ◽  
...  

Aedes mosquitoes harboring intracellular Wolbachia bacteria are being released in arbovirus and mosquito control programs. With releases taking place around the world, understanding the contribution of host variation to Wolbachia phenotype is crucial. We generated a Wolbachia transinfection (wAlbBQ) in Aedes aegypti and performed backcrossing to introduce the infection into Australian or Malaysian nuclear backgrounds. Whole Wolbachia genome sequencing shows that the wAlbBQ transinfection is near-identical to the reference wAlbB genome, suggesting few changes since the infection was first introduced to Ae. aegypti over 15 years ago. However, these sequences were distinct from other available wAlbB genome sequences, highlighting the potential diversity of wAlbB in natural Ae. albopictus populations. Phenotypic comparisons demonstrate effects of wAlbB infection on egg hatch and nuclear background on fecundity and body size, but no interactions between wAlbB infection and nuclear background for any trait. The wAlbB infection was stable at high temperatures and showed perfect maternal transmission and cytoplasmic incompatibility regardless of host background. Our results demonstrate the stability of wAlbB across host backgrounds and point to its long-term effectiveness for controlling arbovirus transmission and mosquito populations.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Luke M Noble ◽  
John Yuen ◽  
Lewis Stevens ◽  
Nicolas D Moya ◽  
Riaad Persaud ◽  
...  

Mating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, C. tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple Medea-like elements, genetically consistent with maternal toxin/zygotic antidote systems. Loci with Medea activity harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating Medea elements dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid Medea-mediated outbreeding depression.


2020 ◽  
pp. jeb.229377
Author(s):  
Adam N. Spierer ◽  
Denise Yoon ◽  
Chen-Tseh Zhu ◽  
David M. Rand

Negative geotaxis (climbing) performance is a useful metric for quantifying Drosophila health. Manual methods to quantify climbing performance are tedious and often biased, while many available computational methods have challenging hardware or software requirements. We present an alternative: FreeClimber. This open source, Python-based platform subtracts a video's static background to improve detection for flies moving across heterogeneous backgrounds. FreeClimber calculates a cohort's velocity as the slope of the most linear portion of a mean-vertical position vs. time curve. It can run from a graphical user interface for optimization or a command line interface for high-throughput and automated batch processing, improving accessibility for users with different expertise. FreeClimber outputs calculated slopes, spot locations for follow up analyses (e.g. tracking), and several visualizations and plots. We demonstrate FreeClimber's utility in a longitudinal study for endurance exercise performance in Drosophila mitonuclear genotypes using six distinct mitochondrial haplotypes paired with a common w1118 nuclear background.


2020 ◽  
Author(s):  
Lorcan Carnegie ◽  
Max Reuter ◽  
Kevin Fowler ◽  
Nick Lane ◽  
M. Florencia Camus

AbstractThe maternal inheritance of mitochondrial genomes entails a sex-specific selective sieve, whereby mutations in mitochondrial DNA can only respond to selection acting directly on females. In theory, this enables male-harming mutations to accumulate in mitochondrial genomes if they are neutral, beneficial, or only slightly deleterious to females. Ultimately, this bias could drive the evolution of male-specific mitochondrial mutation loads, an idea known as mother’s curse. Earlier work on this hypothesis has mainly used small Drosophila panels, in which naturally-sourced mitochondrial genomes were coupled to an isogenic nuclear background. However, the lack of nuclear genetic variation has precluded robust generalization. Here we test the predictions of mother’s curse using a large Drosophila mito-nuclear genetic panel, comprising 9 isogenic nuclear genomes coupled to 9 mitochondrial haplotypes, giving a total of 81 different mito-nuclear genotypes. This enables systematic testing of both mito-nuclear interactions and mitochondrial genetic variance. Following a predictive framework, we performed a screen for wing centroid size, as this trait is highly sexually dimorphic and depends on metabolic function. We confirmed that the trait is sexually dimorphic, and show high levels of mito-nuclear epistasis. Importantly, we report that mitochondrial genetic variance has a greater impact on male versus female Drosophila, in 8 out of the 9 nuclear genetic backgrounds. These results demonstrate that the maternal inheritance of mitochondrial DNA does indeed modulate male life-history traits in a more generalisable way than previously envisaged.


2020 ◽  
Author(s):  
Guilherme C. Baião ◽  
Anton Strunov ◽  
Eleanor Heyworth ◽  
Daniela I. Schneider ◽  
Julia Thoma ◽  
...  

ABSTRACTHeteroplasmy is the coexistence of more than one type of mitochondria in an organism. Although widespread sequencing has identified several cases of transient or low-level heteroplasmy that primarily occur through mutation or paternal leakage, stable, high-titer heteroplasmy remains rare in animals. In this study we present a unique, stable and high-level heteroplasmy in male and female flies belonging to the neotropical Drosophila paulistorum species complex. We show that mitochondria of D. paulistorum are polyphyletic and form two clades, α and β, with two subclades each. Mitochondria of the α2 subclade appear functional based on their genomic integrity but are exclusively found in heteroplasmic flies and never in homoplasmy, suggesting that they are a secondary mitotype with distinct functionality from the primary mitochondria. Using qPCR, we show that α2 titer do not respond to energetic demands of the cell and are generally higher in males than females. By crossing hetero- and homoplasmic flies, we find that α2 can be transmitted to their offspring via both parents and that levels are dependent on nuclear background. Following α2 mitotype levels during embryogenesis, we demonstrate that this secondary mitotype replicates rapidly just after fertilization of the egg in a period when primary mitochondria are dormant. This so-called “Replication precox” mitochondrial phenotype likely prevents the α2 mitotype from being outcompeted by the primary mitotype – and thereby secures its persistence and further spread as a selfish mitochondrion, we hereby designate “Spartacus”. Finally, we reconstruct the evolutionary history of mitochondria in the willistoni subgroup uncovering signs of multiple mitochondrial losses and introgressions. Our data indicate an α-like mitochondrial ancestor in the willistoni subgroup, with the β mitotype likely acquired via introgression from an unidentified donor. We hypothesize that the selfish characteristics of α2 might have emerged as a response to competition for inheritance with the introgressed β mitotype.


2020 ◽  
Author(s):  
Luke M. Noble ◽  
John Yuen ◽  
Lewis Stevens ◽  
Nicolas Moya ◽  
Riaad Persaud ◽  
...  

AbstractMating systems have profound effects on genetic diversity and compatibility. The convergent evolution of self-fertilization in three Caenorhabditis species provides a powerful lens to examine causes and consequences of mating system transitions. Among the selfers, C. tropicalis is the least genetically diverse and most afflicted by outbreeding depression. We generated a chromosomal-scale genome for C. tropicalis and surveyed global diversity. Population structure is very strong, and islands of extreme divergence punctuate a genomic background that is highly homogeneous around the globe. Outbreeding depression in the laboratory is caused largely by multiple gene drive elements, genetically consistent with maternal toxin/zygotic antidote systems. Driver loci harbor novel and duplicated genes, and their activity is modified by mito-nuclear background. Segregating drivers dramatically reduce fitness, and simulations show that selfing limits their spread. Frequent selfing in C. tropicalis may therefore be a strategy to avoid drive-mediated outbreeding depression.


2019 ◽  
Vol 59 (4) ◽  
pp. 912-924 ◽  
Author(s):  
Geoffrey E Hill

Abstract The mitonuclear compatibility species concept defines a species as a population that is genetically isolated from other populations by uniquely coadapted mitochondrial (mt) and nuclear genes. A key prediction of this hypothesis is that the mt genotype of each species will be functionally distinct and that introgression of mt genomes will be prevented by mitonuclear incompatibilities that arise when heterospecific mt and nuclear genes attempt to cofunction to enable aerobic respiration. It has been proposed, therefore, that the observation of rampant introgression of mt genotypes from one species to another constitutes a strong refutation of the mitonuclear speciation. The displacement of a mt genotype from a nuclear background with which it co-evolved to a foreign nuclear background will necessarily lead to fitness loss due to mitonuclear incompatibilities. Here I consider two potential benefits of mt introgression between species that may, in some cases, overcome fitness losses arising from mitonuclear incompatibilities. First, the introgressed mt genotype may be better adapted to the local environment than the native mt genotype such that higher fitness is achieved through improved adaptation via introgression. Second, if the mitochondria of the recipient taxa carry a high mutational load, then introgression of a foreign, less corrupt mt genome may enable the recipient taxa to escape its mutational load and gain a fitness advantage. Under both scenarios, fitness gains from novel mt genotypes could theoretically compensate for the fitness that is lost via mitonuclear incompatibility. I also consider the role of endosymbionts in non-adaptive rampant introgression of mt genomes. I conclude that rampant introgression is not necessarily evidence against the idea of tight mitonuclear coadaptation or the mitonuclear compatibility species concept. Rampant mt introgression will typically lead to erasure of species but in some cases could lead to hybrid speciation.


Sign in / Sign up

Export Citation Format

Share Document