paternal leakage
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jeeyun Lee ◽  
Christopher S Willett

Mitochondria are assumed to be maternally inherited in most animal species, and this foundational concept has fostered advances in phylogenetics, conservation, and population genetics. Like other animals, mitochondria were thought to be solely maternally inherited in the marine copepod Tigriopus californicus, which has served as a useful model for studying mitonuclear interactions, hybrid breakdown, and environmental tolerance. However, we present PCR, Sanger sequencing, and Illumina Nextera sequencing evidence that extensive paternal mitochondrial DNA (mtDNA) transmission is occurring in inter-population hybrids of T. californicus. PCR on four types of crosses between three populations (total sample size of 376 F1 individuals) with 20% genome-wide mitochondrial divergence showed 2% to 59% of F1 hybrids with both paternal and maternal mtDNA, where low and high paternal leakage values were found in different cross directions of the same population pairs. Sequencing methods further verified nucleotide similarities between F1 mtDNA and paternal mtDNA sequences. Interestingly, the paternal mtDNA in F1s from some crosses inherited haplotypes that were uncommon in the paternal population. Compared to some previous research on paternal leakage, we employed more rigorous methods to rule out contamination and false detection of paternal mtDNA due to non-functional nuclear mitochondrial DNA fragments. Our results raise the potential that other animal systems thought to only inherit maternal mitochondria may also have paternal leakage, which would then affect the interpretation of past and future population genetics or phylogenetic studies that rely on mitochondria as uniparental markers.


Euphytica ◽  
2021 ◽  
Vol 217 (6) ◽  
Author(s):  
Larn S. McMurray ◽  
Christopher Preston ◽  
Albert Vandenberg ◽  
Isabel Munoz-Santa ◽  
Dili Mao ◽  
...  

2021 ◽  
Author(s):  
Arunas Radzvilavicius ◽  
Sean Layh ◽  
Matthew D. Hall ◽  
Damian K. Dowling ◽  
Iain G. Johnston

AbstractAcross eukaryotes, genes encoding bioenergetic machinery are located in both mitochondrial and nuclear DNA, and incompatibilities between the two genomes can be devastating. Mitochondria are often inherited maternally, and theory predicts sex-specific fitness effects of mitochondrial mutational diversity. Yet how evolution acts on linkage patterns between mitochondrial and nuclear genomes is poorly understood. Using novel mito-nuclear population genetic models, we show that the interplay between nuclear and mitochondrial genes maintains mitochondrial haplotype diversity within populations, and it selects both for sex-independent segregation of mitochondrion-interacting genes and for paternal leakage. These effects of genetic linkage evolution can eliminate male-harming fitness effects of mtDNA mutational diversity. With maternal mitochondrial inheritance, females maintain a tight mitochondrial-nuclear match, but males accumulate mismatch mutations because of the weak statistical associations between the two genomic components. Sex-independent segregation of mitochondria-interacting loci improves the mito-nuclear match. In a sexually antagonistic evolutionary process, male nuclear alleles evolve to increase the rate of recombination, while females evolve to suppress it. Paternal leakage of mitochondria can evolve as an alternative mechanism to improve the mito-nuclear linkage. Our modelling framework provides an evolutionary explanation for the observed paucity of mitochondrion-interacting genes on mammalian sex chromosomes and for paternal leakage in protists, plants, fungi, and some animals.


2020 ◽  
Author(s):  
Arunas Radzvilavicius ◽  
Iain G. Johnston

AbstractSexual eukaryotes have diverse mechanisms preventing the biparental inheritance of mitochondria and plastids, and reducing the coexistence of dissimilar organelle DNA (heteroplasmy). Nevertheless, paternal leakage often occurs in plants, fungi, protists and animals, and this leaves the possibility that heteroplasmy can in some contexts be advantageous. Theoretical models developed in the past revealed that maternal inheritance improves selection against deleterious mitochondrial mutations, but none of them have explained the observed variation in the extent of paternal leakage. Here we show that paternal leakage regulated by nuclear loci can evolve to maintain advantageous organelle diversity in fluctuating environments. Strict maternal inheritance reduces organelle variance within the cell, but this loss of diversity can be detrimental when environments are shifting rapidly. Our model reveals that high levels of paternal leakage can evolve in these types of rapidly changing environments and that strict maternal inheritance evolves only when the environment is changing slowly.DataMatlab/Octave implementation of the model is available at Https://github.com/StochasticBiology/PaternalLeakageEvolution.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Eirini-Slavka Polovina ◽  
Maria-Eleni Parakatselaki ◽  
Emmanuel D. Ladoukakis

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Valentina Mastrantonio ◽  
Sandra Urbanelli ◽  
Daniele Porretta

AbstractHybridization between heterospecific individuals has been documented as playing a direct role in promoting paternal leakage and mitochondrial heteroplasmy in both natural populations and laboratory conditions, by relaxing the egg-sperm recognition mechanisms. Here, we tested the hypothesis that hybridization can lead to mtDNA heteroplasmy also indirectly via mtDNA introgression. By using a phylogenetic approach, we showed in two reproductively isolated beetle species, Ochthebius quadricollis and O. urbanelliae, that past mtDNA introgression occurred between them in sympatric populations. Then, by developing a multiplex allele-specific PCR assay, we showed the presence of heteroplasmic individuals and argue that their origin was through paternal leakage following mating between mtDNA-introgressed and pure conspecific individuals. Our results highlight that mtDNA introgression can contribute to promote paternal leakage, generating genetic novelty in a way that has been overlooked to date. Furthermore, they highlight that the frequency and distribution of mtDNA heteroplasmy can be deeply underestimated in natural populations, as i) the commonly used PCR-Sanger sequencing approach can fail to detect mitochondrial heteroplasmy, and ii) specific studies aimed at searching for it in populations where mtDNA-introgressed and pure individuals co-occur remain scarce, despite the fact that mtDNA introgression has been widely documented in several taxa and populations.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Valentina Mastrantonio ◽  
Maria Stefania Latrofa ◽  
Daniele Porretta ◽  
Riccardo Paolo Lia ◽  
Antonio Parisi ◽  
...  
Keyword(s):  

2019 ◽  
Vol 19 (1) ◽  
pp. 61-69
Author(s):  
Sylwia Nisztuk-Pacek ◽  
Brygida Ślaska ◽  
Ludmiła Grzybowska-Szatkowska ◽  
Marek Babicz

AbstractThe aim of the study was to describe the mechanism of mitochondrial DNA inheritance in a group of farmed raccoon dogs. The study involved 354 individuals. Whole peripheral blood was the research material. DNA was isolated and PCR was performed for two fragments of mitochondrial genes: COX1 (cytochrome oxidase subunit 1 gene) and COX2 (cytochrome oxidase subunit 2 gene). The PCR products were sequenced and subjected to bioinformatics analyses. Three mitochondrial haplotypes were identified in the COX1 gene fragment and two in the COX2 gene fragment. The analysis of mtDNA inheritance in the paternal line confirmed the three cases of paternal mtDNA inheritance, i.e. the so-called “paternal leakage” in the analysed population. In two families, all offspring inherited paternal mitochondrial DNA, whereas in one family one descendant inherited paternal mtDNA and another one inherited maternal mtDNA. The lineage data indicated that one female which inherited maternal mitochondrial DNA transferred it onto the next generation. To sum up, the results of the study for the first time demonstrated the phenomenon of “paternal leakage” in farmed raccoon dogs, which facilitated description of mitochondrial DNA inheritance in the paternal line.


2017 ◽  
Author(s):  
Arunas L Radzvilavicius ◽  
Hanna Kokko ◽  
Joshua Christie

AbstractMitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller’s ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying-selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed.


Sign in / Sign up

Export Citation Format

Share Document