THE GRAVITY FORCE AND “ANTIGRAVITATIONAL” PROCESSES IN RELIEF FORMATION

2015 ◽  
pp. 3
Author(s):  
B. P. Agafonov
2015 ◽  
pp. 108
Author(s):  
T. M. Skovitina ◽  
A. A. Schetnikov ◽  
G. F. Ufimtsev
Keyword(s):  

2016 ◽  
pp. 46-66
Author(s):  
Тю Фю Dulepova

The aeolian processes play an important role in the relief formation under the semiarid conditions of the intermountain basins of Southern Siberia. Ancient sand landforms occur in different regions of Siberia — the Ob, Chuya, Аley, Yenisei, Аngara, Selenga, Chikoy, Khilok and Chara river valleys and Lake Baikal coasts. The sandy coasts of Lake Baikal are of great interest in terms of floristic diversity determined by a high degree of endemism. Despite centuries of study of the lake basin, sand vegetation is poorly described in the literature. This study presents an analysis of 184 relevés of psammophytic vegetation from the Republic of Buryatia (Severobaikalsky, Barguzinsky, Pribaikalsky districts) and Irkutsk region (Olkhon Island) obtained in 2009–2014.


2015 ◽  
Vol 96 ◽  
pp. 23-34 ◽  
Author(s):  
V. Ayel ◽  
L. Araneo ◽  
A. Scalambra ◽  
M. Mameli ◽  
C. Romestant ◽  
...  

2001 ◽  
Vol 13 (22) ◽  
pp. 1693-1697 ◽  
Author(s):  
N. Zettsu ◽  
T. Ubukata ◽  
T. Seki ◽  
K. Ichimura

2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Piotr Szablewski

In many problems from the field of textile engineering (e.g., fabric folding, motion of the sewing thread) it is necessary to investigate the motion of the objects in dynamic conditions, taking into consideration the influence of the forces of inertia and changing in the time boundary conditions. This paper deals with the model analysis of the motion of the flat textile structure using Lagrange's equations in two variants: without constraints and with constraints. The motion of the objects is under the influence of the gravity force. Lagrange's equations have been used for discrete model of the structure.


2016 ◽  
Vol 823 ◽  
pp. 277-282
Author(s):  
Viorica Velișcu ◽  
Dan Mesarici ◽  
Păun Antonescu

The paper presents a structural analysis of the complex mechanisms type screw-jack. The mechanism mobilityanalysis using various generally applicable formulas has been performed. A newkinematic scheme of the jack linkage has been proposed. Besides the actuatorscrew, it has a planar kinematic chain with articulated bars. With regard tothis new mechanism, an algorithm for static calculus has been developed, inwhich the automobile gravity force is the main exterior force.


2021 ◽  
Author(s):  
Borihan Butsanlee ◽  
Sureeporn Numsumlee ◽  
Watcharin Po-ngaen

2021 ◽  
Vol 66 (3) ◽  
pp. 369-375
Author(s):  
E. V. Galaktionov ◽  
N. E. Galaktionova ◽  
E. A. Tropp

2016 ◽  
Vol 258 ◽  
pp. 526-529 ◽  
Author(s):  
Veronika Mazánová ◽  
Milan Heczko ◽  
Ivo Kuběna ◽  
Jaroslav Polák

Two fatigued materials with f.c.c. lattice, i.e. pure polycrystalline copper and austenitic Sanicro 25 stainless steel, were subjected to the study of the persistent slip markings (PSMs) developed on the surface of the suitably oriented grains. They were observed using scanning electron microscopy (SEM) and thin surface FIB lamellae were prepared and studied by transmission electron microscopy (TEM). The aim was to correlate the specimen surface profile with the underlying internal dislocation structure. The localization of the intensive cyclic slip into persistent slip bands (PSBs) of the material was observed and associated with the PSMs on the specimen surface. Extrusions, intrusions and the dislocation structure appertaining to them were analysed, documented and discussed in relation to the models of fatigue crack initiation.


1969 ◽  
Vol 9 (03) ◽  
pp. 293-300 ◽  
Author(s):  
J.E. Varnon ◽  
R.A. Greenkorn

Abstract This paper reports an investigation of unstable fingering in two-fluid flow in a porous medium to determine if lambda the dimensionless finger width, is unique For a viscous finger A is the ratio of finger width to the distance between the tips of the two trailing fingers adjacent to the leading finger. For a gravity finger lambda is defined as the ratio of finger width, to "height" of the medium perpendicular to hulk flow. This work confirms previous experiments and existing theory that for viscous fingering lambda approaches a value of 0.5 with increasing ratio of viscous to interfacial force. However, for a given fluid pair and given, medium, this ratio can he increased only by increasing the, velocity. Experiments on gas liquid systems show that the asymptotic value of lambda with velocity is not always 0.5. Apparently, for gas-liquid systems, the influence of the interfacial force cannot always he eliminated by increasing the velocity. For such systems lambda is a function of fluid pair and media permeability. If the gravity force normal to the hulk permeability. If the gravity force normal to the hulk flow is active, it damps out the viscous fingers except for an underlying or overlying finger. The dimensionless width of this gravity finger strongly depends on velocity and height of the medium, as well as the fluid and media properties. The existing experiments and theories are reviewed and the gravity, stable, and viscous flow regimes are described in view of these experiments and theories. The existence of a gravity-dominated unstable regime, a gravity-viscous balanced stable regime, and a viscous-anminated regime was demonstrated experimentally by increasing flow velocity bin a rectangular glass head model. Asymptotic values of the dimensionless finger width were determined in various-sized Hele-Shaw models with gravity perpendicular and parallel to flow. The dimensionless perpendicular and parallel to flow. The dimensionless finger width lambda was determined as a function of applied force, flow resistance, and fluid properties. The results are interpreted dimensionally. Some comments are made concerning possible scaling and meaningful extensions of theory to describe these regimes in three-dimensional flow. Previous description of unstable two-fluid flow in porous media is mainly restricted to studies of viscous-dominated instability. The direction of this study is to provide data and understanding to consider the more realistic problem of predicting flow in three dimensions that may result in instabilities that are combinations of all, four flow regimes. Introduction The unstable flow of two fluids is characterized by interface changes between the fluids as a result of changes in relative forces. In a given porous medium and for a given fluid pair the gravity force dominates flow at low displacement velocities. As the velocity increases the viscous forces begin to affect flow significantly, and eventually there is a balance between effects of the gravity and viscous forces. As velocity increases further, the viscous force dominates flow. In the plane parallel to gravity, four flow regimes result as the velocity is increased: a gravity-induced stable flow regime; a gravity-dominated unstable flow regime; a stable regime resulting from a balance between gravity and viscous forces; and a viscous-induced unstable flow regime. The gravity-induced stable regime is represented schematically in Fig. 1a. This general flow pattern persists with the displacing fluid contacting all of persists with the displacing fluid contacting all of the in-place fluid until the interface becomes parallel to the bulk flow. At this velocity a gravity finger forms, and the interface, is unstable in that the length of the gravity finger grows and the fluid behind the nose of the finger is practically nonmobile because of the small pressure gradient along the finger. The gravity-dominated unstable flow is shown schematically in Fig. 1b. As the injection rate is increased, the gravity finger thickens, perhaps until it spans the medium creating a stable interface where all of the in-place, fluid is again mobile. This regime would, not occur in the absence of gravity. It occurs due to the counter effects of the gravity and viscous forces (Fig. 1c). As the velocity of the displacing fluid increases, the viscous forces dominate, and, the interface breaks into viscous fingers (Fig. 1d). SPEJ p. 293


Sign in / Sign up

Export Citation Format

Share Document