TECTONIC EVOLUTION OF THE ARCTIC AREAS AND THE WATER AREAS OF THE WEST SIBERIAN PETROLIFEROUS PROVINCE

2017 ◽  
Vol 58 (3-4) ◽  
pp. 343-361 ◽  
Author(s):  
V.A. Kontorovich ◽  
D.V. Ayunova ◽  
I.A. Gubin ◽  
A.Yu. Kalinin ◽  
L.M. Kalinina ◽  
...  

1985 ◽  
Vol 114 (1-4) ◽  
pp. 193-211 ◽  
Author(s):  
C. Craddock ◽  
E.C. Hauser ◽  
H.D. Maher ◽  
A.Y. Sun ◽  
Zhu Guo-Qiang

2018 ◽  
Vol 112 (1) ◽  
pp. 55-81 ◽  
Author(s):  
Dušan Plašienka ◽  
Štefan Méres ◽  
Peter Ivan ◽  
Milan Sýkora ◽  
Ján Soták ◽  
...  

Author(s):  
Yuriy V. Erokhin ◽  
Kirill S. Ivanov ◽  
Anatoliy V. Zakharov ◽  
Vera V. Khiller

The results of studying the mineralogy of metamorphic schists from the Pre-Jurassic base of the Arctic part of the West Siberian plate are presented. The accessory and ore mineralization of schists from the Zapadno-Yarotinsky license area located in the southern part of the Yamal Peninsula is studied. The schists was uncovered by the Zapadno-Yarotinskaya No. 300 well at a depth of 2762 m. Above the section, the metamorphic rocks are overlain by a young Meso-Cenozoic cover. The schists are mainly composed of quartz, plagioclase (albite), carbonates (dolomite and siderite), mica (muscovite) and chlorite (donbassite). The discovered accessory and ore minerals in the metamorphic schists of the Zapadno-Yarotinsky area can be divided into two groups. The first group includes minerals that were formed during the metamorphism of schists, or were preserved as detrital matter. These minerals include zircon, fluorapatite, and rutile as the most stable compounds. The remaining mineralization (pyrite, sphalerite, chalcopyrite, cubanite, galena, cobaltite, barite, xenotime-(Y), goyazite, synchysite-(Nd), native silver and copper) is clearly secondary and was formed as a result of superimposed metasomatic processes. Judging from the described mineralogy, the schists underwent changes as a result of superimposed propyllitization. The temperature range of this process is determined by the formation of cubanite in association with chalcopyrite at a temperature of 200-210 оС.


2015 ◽  
Vol 89 (5) ◽  
pp. 1497-1515 ◽  
Author(s):  
ZHANG Heng ◽  
LI Tingdong ◽  
XIE Ying ◽  
ZHANG Chuanheng ◽  
GAO Linzhi ◽  
...  

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 341
Author(s):  
Yalong Li ◽  
Wei Yue ◽  
Xun Yu ◽  
Xiangtong Huang ◽  
Zongquan Yao ◽  
...  

The Bogeda Shan (Mountain) is in southern part of the Central Asian Orogenic Belt (CAOB) and well preserved Paleozoic stratigraphy, making it an ideal region to study the tectonic evolution of the CAOB. However, there is a long-standing debate on the tectonic setting and onset uplift of the Bogeda Shan. In this study, we report detrital zircon U-Pb geochronology and whole-rock geochemistry of the Permian sandstone samples, to decipher the provenance and tectonic evolution of the West Bogeda Shan. The Lower-Middle Permian sandstone is characterized by a dominant zircon peak age at 300–400 Ma, similar to the Carboniferous samples, suggesting their provenance inheritance and from North Tian Shan (NTS) and Yili-Central Tian Shan (YCTS). While the zircon record of the Upper Permian sandstone is characterized by two major age peaks at ca. 335 Ma and ca. 455 Ma, indicating the change of provenance after the Middle Permian and indicating the uplift of Bogeda Shan. The initial uplift of Bogeda Shan was also demonstrated by structural deformations and unconformity occurring at the end of Middle Permian. The bulk elemental geochemistry of sedimentary rocks in the West Bogeda Shan suggests the Lower-Middle Permian is mostly greywacke with mafic source dominance, and tectonic setting changed from the continental rift in the Early Permian to post rift in the Middle Permian. The Upper Permian mainly consists of litharenite and sublitharenite with mafic-intermediate provenances formed in continental island arcs. The combined evidences suggest the initial uplift of the Bogeda Shan occurred in the Late Permian, and three stages of mountain building include the continental rift, post-rift extensional depression, and continental arc from the Early, Middle, to Late Permian, respectively.


2012 ◽  
Vol 13 (12) ◽  
Author(s):  
Ana D. Gibbons ◽  
Udo Barckhausen ◽  
Paul van den Bogaard ◽  
Kaj Hoernle ◽  
Reinhard Werner ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document