Combustion characteristics of biomass and bituminous coal co-firing in non-isothermal and isothermal conditions

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9490-9506
Author(s):  
Meijing Chen ◽  
Baojun Yi ◽  
Zhigang Li ◽  
Qiaxia Yuan

A thermogravimetric method was used to study the combustion of bituminous coal (BC), diverse biomass (wood chips: WC, chaff: CH), and their blends under non-isothermal conditions and isothermal conditions. A higher blending amount of WC or CH under non-isothermal conditions resulted in a lower ignition temperature, burnout temperature, and a greater comprehensive combustion characteristic index. Meanwhile, the co-combustion of BC, WC, and CH all showed inhibiting effects. The inhibition effect was prominent when the blending ratio of WC was below 30%. Under isothermal conditions, with the increase of oxygen concentration and blending amount, the combustion performance of BC improved gradually. The synergistic effect between BC and biomass dominated, and the interaction was more distinct when WC content exceeded 50%. Under both non-isothermal and isothermal conditions, the interaction between CH and BC did not vary at diverse blending ratios. The dynamic results suggested that the chemical reaction model O1 was suitable for stage 1 of the co-combustion of WC and BC, the model diffusion controlled D4 controlled the co-combustion of CH and BC and stage 2 of the co-combustion of WC and BC. The blending ratio of WC or CH with the lowest activation energy was 50%.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yingchun Liu ◽  
Hao Zhang ◽  
Xiaohui Zhang ◽  
Shan Qing ◽  
Aimin Zhang ◽  
...  

The Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method is used to find optimal mixing scheme of Zhaotong lignite, Fuyuan bituminous coal, and Xiaolongtan lignite in terms of combustion performance. Comparative evaluation of different mixing schemes is also conducted, where the flammability index, comprehensive combustion characteristic index, burnout temperature, and economic costs can be used to measure the advantages and disadvantages of different mixing schemes with different parameters. Through analysis and optimization, it is found that when the lignite of Xiaolongtan, lignite of Zhaotong, and bituminous coal of Fuyuan are mixed with a ratio 2 : 1 : 2, the mixed coal has the best performance; when the lignite of Xiaolongtan, lignite of Zhaotong, and bituminous coal of Fuyuan are mixed with a ratio 0 : 2 : 1, the mixed coal has the worst performance.


2017 ◽  
Vol 31 (3) ◽  
pp. 2274-2297 ◽  
Author(s):  
N. A. Slavinskaya ◽  
M. Abbasi ◽  
J. H. Starcke ◽  
R. Whitside ◽  
A. Mirzayeva ◽  
...  

Author(s):  
Jun Zhou ◽  
Junping Shi

In this paper, we revisit a reaction—diffusion autocatalytic chemical reaction model with decay. For higher-order reactions, we prove that the system possesses at least two positive steady-state solutions; hence, it has bistable dynamics similar to the system without decay. For the linear reaction, we determine the necessary and sufficient condition to ensure the existence of a solution. Moreover, in the one-dimensional case, we prove that the positive steady-state solution is unique. Our results demonstrate the drastic difference in dynamics caused by the order of chemical reactions.


2004 ◽  
Vol 108 (6) ◽  
pp. 1815-1821 ◽  
Author(s):  
Yaroslava G. Yingling ◽  
Barbara J. Garrison

Sign in / Sign up

Export Citation Format

Share Document