scholarly journals Comparative Study on Circadian Rhythms of Body Temperature, Heart Rate, and Locomotor Activity in Three Species Hamsters

2004 ◽  
Vol 53 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Haruo HASHIMOTO ◽  
Naoki MORITANI ◽  
Toru R. SAITO
2011 ◽  
Vol 300 (3) ◽  
pp. R519-R530 ◽  
Author(s):  
Jens Hannibal ◽  
Hansen M. Hsiung ◽  
Jan Fahrenkrug

Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4–6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.


1995 ◽  
Vol 268 (5) ◽  
pp. R1111-R1116 ◽  
Author(s):  
P. Depres-Brummer ◽  
F. Levi ◽  
G. Metzger ◽  
Y. Touitou

In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.


2010 ◽  
Vol 1 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Claudio Signer ◽  
Thomas Ruf ◽  
Franz Schober ◽  
Gerhard Fluch ◽  
Thomas Paumann ◽  
...  

1978 ◽  
Vol 235 (5) ◽  
pp. R243-R249 ◽  
Author(s):  
K. I. Honma ◽  
T. Hiroshige

Three biological rhythms (locomotor activity, body temperature, and plasma corticosterone) were measured simultaneously in individual rats under light-dark cycles and continuous light. Spontaneous locomotor activity was recorded on an Animex and body temperature was telemetrically monitored throughout the experiments. Blood samples were obtained serially at 2-h intervals on the experimental days. Phase angles of these rhythms were calculated by a least-squares spectrum analysis. Under light-dark cycles, the acrophases of locomotor activity, body temperature, and plasma corticosterone were found at 0029, 0106, and 1940 h, respectively. When rats were exposed to 200 lx continuous light, locomotor activity and body temperature showed free-running rhythms with a period of 25.2 h on the average. Plasma corticosterone levels determined at 12 days after exposure to continuous light exhibited a circadian rhythm with the acrophase shifted to 0720. The acrophases of locomotor activity and body temperature, determined simultaneously on the same day, were found to be located at 1303 and 1358 h, respectively. Phase-angle differences among the three rhythms on the 12th day of continuous light were essentially the same with those under the light-dark cycle. These results suggest that circadian rhythms of locomotor activity, body temperature, and plasma corticosterone are most probably coupled to a common internal oscillator in the rat.


1995 ◽  
Vol 59 (8) ◽  
pp. 565-573 ◽  
Author(s):  
Hiroaki Sano ◽  
Hiroshi Hayashi ◽  
Mitsutaka Makino ◽  
Hiroto Takezawa ◽  
Makoto Hirai ◽  
...  

2017 ◽  
Vol 34 (8) ◽  
pp. 1136-1148 ◽  
Author(s):  
D. G. Gubin ◽  
A. A. Nelaeva ◽  
A. E. Uzhakova ◽  
Y. V. Hasanova ◽  
G. Cornelissen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document