scholarly journals On the primitive irreducible representations of finitely generated nilpotent groups

Author(s):  
A.V. Tushev

We develop some tecniques whish allow us to apply the methods of commutative algebra for studing the representations of nilpotent groups. Using these methods, in particular, we show that any irreducible representation of a finitely generated nilpotent group G over a finitely generated field of characteristic zero is induced from a primitive representation of some subgroup of G.

2018 ◽  
Vol 2018 (738) ◽  
pp. 281-298 ◽  
Author(s):  
Caleb Eckhardt ◽  
Paul McKenney

Abstract We show that group C*-algebras of finitely generated, nilpotent groups have finite nuclear dimension. It then follows, from a string of deep results, that the C*-algebra A generated by an irreducible representation of such a group has decomposition rank at most 3. If, in addition, A satisfies the universal coefficient theorem, another string of deep results shows it is classifiable by its ordered K-theory and is approximately subhomogeneous. We observe that all C*-algebras generated by faithful irreducible representations of finitely generated, torsion free nilpotent groups satisfy the universal coefficient theorem.


1977 ◽  
Vol 81 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Daniel Segal

1. Introduction. It is well known that every finite-dimensional irreducible representation of a nilpotent group over an algebraically closed field is monomial, that is induced from a 1-dimensional representation of some subgroup. However, even a finitely generated nilpotent group in general has infinite-dimensional irreducible representations, and as a first step towards an understanding of these one wants to discover whether they too are necessarily monomial. The main point of this note is to show how far they can fail to be so.


1977 ◽  
Vol 82 (2) ◽  
pp. 241-247 ◽  
Author(s):  
D. L. Harper

Here we answer a question raised by Zaleskii (5) and reiterated by Segal (3) of whether a finitely generated nilpotent group can have primitive irreducible representations.


Author(s):  
A. V. Tushev

In the paper, we study finitely generated linear groups of finite rank which have faithful irreducible primitive representations over a field of characteristic zero. We prove that if an infinite finitely generated linear group [Formula: see text] of finite rank has a faithful irreducible primitive representation over a field of characteristic zero then the [Formula: see text]-center [Formula: see text] of [Formula: see text] is infinite.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


1987 ◽  
Vol 107 ◽  
pp. 63-68 ◽  
Author(s):  
George Kempf

Let H be the Levi subgroup of a parabolic subgroup of a split reductive group G. In characteristic zero, an irreducible representation V of G decomposes when restricted to H into a sum V = ⊕mαWα where the Wα’s are distinct irreducible representations of H. We will give a formula for the multiplicities mα. When H is the maximal torus, this formula is Weyl’s character formula. In theory one may deduce the general formula from Weyl’s result but I do not know how to do this.


2020 ◽  
Vol 23 (5) ◽  
pp. 801-829
Author(s):  
Mark Pengitore

AbstractThe function {\mathrm{F}_{G}(n)} gives the maximum order of a finite group needed to distinguish a nontrivial element of G from the identity with a surjective group morphism as one varies over nontrivial elements of word length at most n. In previous work [M. Pengitore, Effective separability of finitely generated nilpotent groups, New York J. Math. 24 2018, 83–145], the author claimed a characterization for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. However, a counterexample to the above claim was communicated to the author, and consequently, the statement of the asymptotic characterization of {\mathrm{F}_{N}(n)} is incorrect. In this article, we introduce new tools to provide lower asymptotic bounds for {\mathrm{F}_{N}(n)} when N is a finitely generated nilpotent group. Moreover, we introduce a class of finitely generated nilpotent groups for which the upper bound of the above article can be improved. Finally, we construct a class of finitely generated nilpotent groups N for which the asymptotic behavior of {\mathrm{F}_{N}(n)} can be fully characterized.


1995 ◽  
Vol 117 (3) ◽  
pp. 431-438 ◽  
Author(s):  
Charles Cassidy ◽  
Caroline Lajoie

AbstractIn this paper, we characterize the genus of an arbitrary torsion-free finitely generated nilpotent group of class two and of Hirsch length six by means of a finite number of arithmetical invariants. An algorithm which permits the enumeration of all possible genera that can occur under the conditions above is also given.


1979 ◽  
Vol 31 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Albert O. Shar

If (Y, µ) is an H-Space (here all our spaces are assumed to be finitely generated) with homotopy associative multiplication µ. and X is a finite CW complex then [X, Y] has the structure of a nilpotent group. Using this and the relationship between the localizations of nilpotent groups and topological spaces one can demonstrate various properties of [X,Y] (see [1], [2], [6] for example). If µ is not homotopy associative then [X, Y] has the structure of a nilpotent loop [7], [9]. However this algebraic structure is not rich enough to reflect certain significant properties of [X, Y]. Indeed, we will show that there is no theory of localization for nilpotent loops which will correspond to topological localization or will restrict to the localization of nilpotent groups.


Sign in / Sign up

Export Citation Format

Share Document