scholarly journals INFLUENCE OF REGIME AND OPERATIONAL FACTORS ON THE DAMPER SYSTEM OF THE SALI-ENT-POLE SYNCHRONOUS MACHINE ROTOR

2021 ◽  
Vol 2021 (2) ◽  
pp. 47-57
Author(s):  
Yu.M. Vaskovsky ◽  
◽  
O.A. Geraskin ◽  
◽  
◽  
...  

The physical processes in the damping system of the salient-pole synchronous machine rotor, which cause the gradual destruction of its structure, have been studied. In particular, the distributions of currents, temperatures and thermomechanical stresses in the damping system rods during its operation in asynchronous and asymmetric modes of operation, as well as in case of rotor eccentricity. A field mathematical model has been developed that takes into account the combined action of three physical fields of different nature: electromagnetic, temperaturic, and thermomechanical stress fields, and allows estimating heating and thermomechanical loads in the damping system of the rotor of the salient-pole synchronous machine. According to the results of the analysis, the heating and thermomechanical loads of the structural elements were determined and recommendations for its structural improvement were given. References 9, figures 9, tables 1.

Author(s):  
Yuriy Vaskovskiy ◽  
Alexandr Geraskin ◽  
Konstantin Tatarinov

The physical processes in the damper system of the rotor with the appearance of a static eccentricity of the rotor for two types of salient-pole synchronous machines - a capsule hydrogenator SGK 538/160-70M with a capacity of 22 MW and a synchronous generator with a capacity of 500 kW were investigated by means of mathematical modeling. A field mathematical model has been developed that takes into account the combined action of three physical fields of different nature: electromagnetic, temperature and field of thermomechanical stresses, and makes it possible to evaluate the heating and three-dimensional distribution of thermomechanical stresses in the structural elements of the rotor damper system of a salient-pole synchronous machine. These physical processes cause gradual destruction of the structure of the rotor damper system. It is proved that the primary cause of degradation and damage of the damping system of the rotor of an open-pole synchronous machine is the uneven distribution of induced currents in the rods at the poles of the rotor, which occurs when the machine works asynchronously or with the appearance of rotor static eccentricity. The largest induced currents and heat occur in the rods located at the edges of the pole pieces, while the central rods at the pole are heated significantly less. This asymmetric heating of the damping system of the rotor leads to significant thermomechanical stresses in the elements of the damping system of the rotor, which significantly depend on the magnitude of the eccentricity and slippery of the rotor in asynchronous mode. The magnitude of the total thermomechanical stresses in the rods is influenced not only by axially directed forces but also by transverse forces in the end short-circuiting elements. At considerable slippery and eccentricities there are inadmissibly big breaking forces which break cores and face short-circuiting elements of a damping system of a rotor. According to the results of the analysis, the heating and thermomechanical stresses of the structural elements were determined and recommendations for its structural improvement were given.


2007 ◽  
Vol 4 (1) ◽  
pp. 51-69 ◽  
Author(s):  
M. Hasni ◽  
S. Djema ◽  
O. Touhami ◽  
R. Ibtiouen ◽  
M. Fadel ◽  
...  

This paper presents the results of a frequency and time-domain identification procedure to estimate the linear parameters of a salient-pole synchronous machine at standstill. The objective of this study is to use several input signals to identify the model structure and parameters of a salient-pole synchronous machine from standstill test data. The procedure consists to define, to conduct the standstill tests and also to identify the model structure. The signals used for identification are the different excitation voltages at standstill and the flowing current in different windings. We estimate the parameters of operational impedances, or in other words the reactance and the time constants. The tests were carried out on synchronous machine of 1.5 kVA 380V 1500 rpm.


1981 ◽  
Vol 18 (2) ◽  
pp. 155-158
Author(s):  
N. N. Hancock

It is shown that the two components of the transient armature currents of a salient-pole synchronous machine usually described as undirectional and of double frequency are both alternating and that the sum of their frequencies is twice the angular velocity. The usual assumption is, however, well justified at rated speed.


Sign in / Sign up

Export Citation Format

Share Document