salient pole synchronous machine
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (2) ◽  
pp. 47-57
Author(s):  
Yu.M. Vaskovsky ◽  
◽  
O.A. Geraskin ◽  
◽  
◽  
...  

The physical processes in the damping system of the salient-pole synchronous machine rotor, which cause the gradual destruction of its structure, have been studied. In particular, the distributions of currents, temperatures and thermomechanical stresses in the damping system rods during its operation in asynchronous and asymmetric modes of operation, as well as in case of rotor eccentricity. A field mathematical model has been developed that takes into account the combined action of three physical fields of different nature: electromagnetic, temperaturic, and thermomechanical stress fields, and allows estimating heating and thermomechanical loads in the damping system of the rotor of the salient-pole synchronous machine. According to the results of the analysis, the heating and thermomechanical loads of the structural elements were determined and recommendations for its structural improvement were given. References 9, figures 9, tables 1.


Author(s):  
Zohreh Delirani ◽  
Akbar Rahideh ◽  
Mohammad Mardaneh

Purpose This paper aims to present an analytical electromagnetic model for wound rotor synchronous machines with a salient-pole rotor structure based on the two-dimensional subdomain technique. Design/methodology/approach The machine is divided into five active sub-regions: stator slots, stator slot openings, air gap, rotor slots and rotor slot openings. For each sub-region, the governing partial differential equations are derived and solved analytically. Findings The magnetic flux density distributions in all active sub-regions are analytically computed and other quantities such as back-emf, inductances, electromagnetic torque and unbalanced magnetic forces are also analytically calculated. The results of the analytical model are compared to those obtained from the finite element analysis to show the accuracy of the proposed model. Originality/value The two-dimensional analytical model of a wound rotor salient-pole synchronous machine using the sub-domain technique is the main contribution of the research.


Author(s):  
Bilquis Mohamodhosen ◽  
Abdelmounaïm Tounzi ◽  
Frédéric Gillon

The purpose of this paper is to optimize the topology of the rotor head in a Salient Pole Synchronous Generator to maximize the magnetic flux in the stator yoke and in the air gap. The generator is modelled using FE method, and the ON-OFF method is used to manage the optimization domain. Genetic Algorithm is used to find the optimal solution for the problem. The resulting topology and convergence graphs are also presented, and the results are discussed.


2019 ◽  
Vol 9 (1) ◽  
pp. 3739-3743 ◽  
Author(s):  
M. A. Khlifi

The current paper discusses the theoretically detailed physical analysis of the effects of main flux saturation in smooth air gap AC machines. For that purpose, three sections are presented. The first one deals for presenting equivalence saturation-air gap. The second presents the equivalence of inductances between saturation induction machines and a dismounted salient pole synchronous machine. The method analyzes the leakage inductances that properly represent the corresponding leakage fluxes. The third section treats the physical interpretation of the cross-saturation. It is possible to show that the equations and physical picture in a saturated smooth-air-gap machine are similar to the equations and physical picture in a non-saturated salient-pole machine, where mutual coupling exists between the direct and quadrature axes and the self-inductances are also different on the non-salient part of the machine due to the variation of the reluctance with the rotor angle.


Sign in / Sign up

Export Citation Format

Share Document