scholarly journals Modeling of Bacterial Chemotaxis in a Medium with a Repellent

2018 ◽  
Vol 63 (9) ◽  
pp. 802
Author(s):  
O. M. Vasilev ◽  
V. O. Karpenko

The bacterial chemotaxis in a one-dimensional system with a repellent has been considered. The process of bacterial redistribution in the system is analyzed, and a corresponding phenomenological model is proposed, which makes allowance for the diffusion of bacteria and their motion caused by the repellent gradient. The repellent injection into the system is governed by boundary conditions. In the framework of this model, the chemotaxis sensitivity function, a numerical characteristic, which describes the nonuniformity in the bacterial distribution, is calculated. A dependence of the chemotaxis sensitivity function on the repellent concentration at the system boundaries is obtained. A relation between the bacterial distribution and the parameters of repellent distribution is found.

2018 ◽  
Vol 63 (3) ◽  
pp. 255 ◽  
Author(s):  
A. N. Vasilev

We consider the chemotaxis problem for a one-dimensional system. To analyze the interaction of bacteria and an attractant, we use a modified Keller–Segel model, which accounts for the attractant absorption. To describe the system, we use the chemotaxis sensitivity function, which characterizes the nonuniformity of the bacteria distribution. In particular, we investigate how the chemotaxis sensitivity function depends on the concentration of an attractant at the boundary of the system. It is known that, in the system without absorption, the chemotaxis sensitivity function has a bell shape maximum. Here, we show that the attractant absorption and special boundary conditions for bacteria can cause the appearance of an additional maximum in the chemotaxis sensitivity function. The value of this maximum is determined by the intensity of absorption.


Author(s):  
Jayantheeswar Venkatesh ◽  
Anders Thorin ◽  
Mathias Legrand

Finite elements in space with time-stepping numerical schemes, even though versatile, face theoretical and numerical difficulties when dealing with unilateral contact conditions. In most cases, an impact law has to be introduced to ensure the uniqueness of the solution: total energy is either not preserved or spurious high-frequency oscillations arise. In this work, the Time Domain Boundary Element Method (TD-BEM) is shown to overcome these issues on a one-dimensional system undergoing a unilateral Signorini contact condition. Unilateral contact is implemented by switching between free boundary conditions (open gap) and fixed boundary conditions (closed gap). The solution method does not numerically dissipate energy unlike the Finite Element Method and properly captures wave fronts, allowing for the search of periodic solutions. Indeed, TD-BEM relies on fundamental solutions which are travelling Heaviside functions in the considered one-dimensional setting. The proposed formulation is capable of capturing main, subharmonic as well as internal resonance backbone curves useful to the vibration analyst. For the system of interest, the nonlinear modeshapes are piecewise-linear unseparated functions of space and time, as opposed to the linear modeshapes that are separated half sine waves in space and full sine waves in time.


1998 ◽  
Vol 63 (6) ◽  
pp. 761-769 ◽  
Author(s):  
Roland Krämer ◽  
Arno F. Münster

We describe a method of stabilizing the dominant structure in a chaotic reaction-diffusion system, where the underlying nonlinear dynamics needs not to be known. The dominant mode is identified by the Karhunen-Loeve decomposition, also known as orthogonal decomposition. Using a ionic version of the Brusselator model in a spatially one-dimensional system, our control strategy is based on perturbations derived from the amplitude function of the dominant spatial mode. The perturbation is used in two different ways: A global perturbation is realized by forcing an electric current through the one-dimensional system, whereas the local perturbation is performed by modulating concentrations of the autocatalyst at the boundaries. Only the global method enhances the contribution of the dominant mode to the total fluctuation energy. On the other hand, the local method leads to simple bulk oscillation of the entire system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Milad Jangjan ◽  
Mir Vahid Hosseini

AbstractWe theoretically report the finding of a new kind of topological phase transition between a normal insulator and a topological metal state where the closing-reopening of bandgap is accompanied by passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is characterized by stable zero-energy localized edge states that exist within the full gapless bulk states. Such states living on a quasi-one-dimensional system with three sublattices per unit cell are protected by hidden inversion symmetry. While other required symmetries such as chiral, particle-hole, or full inversion symmetry are absent in the system.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yolanda Lozano ◽  
Carlos Nunez ◽  
Anayeli Ramirez

Abstract We present a new infinite family of Type IIB supergravity solutions preserving eight supercharges. The structure of the space is AdS2 × S2 × CY2 × S1 fibered over an interval. These solutions can be related through double analytical continuations with those recently constructed in [1]. Both types of solutions are however dual to very different superconformal quantum mechanics. We show that our solutions fit locally in the class of AdS2 × S2 × CY2 solutions fibered over a 2d Riemann surface Σ constructed by Chiodaroli, Gutperle and Krym, in the absence of D3 and D7 brane sources. We compare our solutions to the global solutions constructed by Chiodaroli, D’Hoker and Gutperle for Σ an annulus. We also construct a cohomogeneity-two family of solutions using non-Abelian T-duality. Finally, we relate the holographic central charge of our one dimensional system to a combination of electric and magnetic fluxes. We propose an extremisation principle for the central charge from a functional constructed out of the RR fluxes.


2020 ◽  
Vol 75 (8) ◽  
pp. 713-725 ◽  
Author(s):  
Guenbo Hwang

AbstractInitial-boundary value problems for the one-dimensional linear advection–dispersion equation with decay (LAD) are studied by utilizing a unified method, known as the Fokas method. The method takes advantage of the spectral analysis of both parts of Lax pair and the global algebraic relation coupling all initial and boundary values. We present the explicit analytical solution of the LAD equation posed on the half line and a finite interval with general initial and boundary conditions. In addition, for the case of periodic boundary conditions, we show that the solution of the LAD equation is asymptotically t-periodic for large t if the Dirichlet boundary datum is periodic in t. Furthermore, it can be shown that if the Dirichlet boundary value is asymptotically periodic for large t, then so is the unknown Neumann boundary value, which is uniquely characterized in terms of the given asymptotically periodic Dirichlet boundary datum. The analytical predictions for large t are compared with numerical results showing the excellent agreement.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


Sign in / Sign up

Export Citation Format

Share Document