bacterial chemotaxis
Recently Published Documents


TOTAL DOCUMENTS

646
(FIVE YEARS 65)

H-INDEX

77
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Girija A. Bodhankar ◽  
Payman Tohidifar ◽  
Zachary L. Foust ◽  
George W. Ordal ◽  
Christopher V. Rao

Bacillus subtilis employs ten chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis . Phenol is an attractant at low, micromolar concentrations, and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to govern the attractant response to phenol and related compounds. Using chemoreceptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation-transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and further demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors. IMPORTANCE Bacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis . We show that phenol is sensed both as an attractant and a repellent. While the mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.


2021 ◽  
Vol 9 (12) ◽  
pp. 2591
Author(s):  
Qun Li ◽  
Ailing Guo ◽  
Yi Ma ◽  
Ling Liu ◽  
Wukang Liu ◽  
...  

Listeria monocytogenes is a zoonotic food-borne pathogen. The production of food-borne pathogenic bacteria aggregates is considered to be a way to improve their resistance and persistence in the food chain. Ralstonia insidiosa has been shown to induce L. monocytogenes to form suspended aggregates, but induction mechanisms remain unclear. In the study, the effect of R. insidiosa cell-free supernatants cultured in 10% TSB medium (10% RIS) on the formation of L. monocytogenes suspended aggregates was evaluated. Next, the Illumina RNA sequencing was used to compare the transcriptional profiles of L. monocytogenes in 10% TSB medium with and without 10% RIS to identify differentially expressed genes (DEGs). The result of functional annotation analysis of DEGs indicated that these genes mainly participate in two component system, bacterial chemotaxis and flagellar assembly. Then the reaction network of L. monocytogenes suspended aggregates with the presence of 10% RIS was summarized. The gene-deletion strain of L. monocytogenes was constructed by homologous recombination. The result showed that cheA and cheY are key genes in the formation of suspended aggregates. This research is the preliminary verification of suspended aggregates’ RNA sequencing and is helpful to analyze the aggregation mechanisms of food-borne pathogenic bacteria from a new perspective.


2021 ◽  
Vol 118 (48) ◽  
pp. e2105138118
Author(s):  
Avaneesh V. Narla ◽  
Jonas Cremer ◽  
Terence Hwa

Bacterial cells navigate their environment by directing their movement along chemical gradients. This process, known as chemotaxis, can promote the rapid expansion of bacterial populations into previously unoccupied territories. However, despite numerous experimental and theoretical studies on this classical topic, chemotaxis-driven population expansion is not understood in quantitative terms. Building on recent experimental progress, we here present a detailed analytical study that provides a quantitative understanding of how chemotaxis and cell growth lead to rapid and stable expansion of bacterial populations. We provide analytical relations that accurately describe the dependence of the expansion speed and density profile of the expanding population on important molecular, cellular, and environmental parameters. In particular, expansion speeds can be boosted by orders of magnitude when the environmental availability of chemicals relative to the cellular limits of chemical sensing is high. Analytical understanding of such complex spatiotemporal dynamic processes is rare. Our analytical results and the methods employed to attain them provide a mathematical framework for investigations of the roles of taxis in diverse ecological contexts across broad parameter regimes.


2021 ◽  
Author(s):  
Noele Norris ◽  
Uria Alcolombri ◽  
Johannes M Keegstra ◽  
Yutaka Yawata ◽  
Filippo Menolascina ◽  
...  

To swim up gradients of nutrients, E. coli senses nutrient concentrations within its periplasm. For small nutrient molecules, periplasmic concentrations typically match extracellular concentrations. However, this is not necessarily the case for saccharides, such as maltose, which is transported into the periplasm via a specific porin. Previous observations have shown that under various conditions E. coli limits maltoporin abundance so that, for extracellular micromolar concentrations of maltose, there are predicted to be only nanomolar concentrations of free maltose in the periplasm. Thus, in the micromolar regime, the total uptake of maltose from the external environment into the cytoplasm is limited not by the abundance of cytoplasmic transport proteins but by the abundance of maltoporins. Here we present results from experiments and modeling showing that this porin-limited transport enables E. coli to sense micromolar gradients of maltose despite having a high-affinity ABC transport system that is saturated at these micromolar levels. We used microfluidic assays to study chemotaxis of E. coli in various gradients of maltose and methyl-aspartate and leveraged our experimental observations to develop a mechanistic transport-and-sensing chemotaxis model. Incorporating this model into agent-based simulations, we discover a trade-off between uptake and sensing: although high-affinity transport enables higher uptake rates at low nutrient concentrations, it severely limits dynamic sensing range. We thus propose that E. coli may limit periplasmic uptake to increase its chemotactic sensitivity, enabling it to use maltose as an environmental cue.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yang Liu ◽  
Thomas Lehnert ◽  
Martin A. M. Gijs

AbstractPhenotypic diversity in bacterial flagella-induced motility leads to complex collective swimming patterns, appearing as traveling bands with transient locally enhanced cell densities. Traveling bands are known to be a bacterial chemotactic response to self-generated nutrient gradients during growth in resource-limited microenvironments. In this work, we studied different parameters of Escherichia coli (E. coli) collective migration, in particular the quantity of bacteria introduced initially in a microfluidic chip (inoculum size) and their exposure to antibiotics (ampicillin, ciprofloxacin, and gentamicin). We developed a hybrid polymer-glass chip with an intermediate optical adhesive layer featuring the microfluidic channel, enabling high-content imaging of the migration dynamics in a single bacterial layer, i.e., bacteria are confined in a quasi-2D space that is fully observable with a high-magnification microscope objective. On-chip bacterial motility and traveling band analysis was performed based on individual bacterial trajectories by means of custom-developed algorithms. Quantifications of swimming speed, tumble bias and effective diffusion properties allowed the assessment of phenotypic heterogeneity, resulting in variations in transient cell density distributions and swimming performance. We found that incubation of isogeneic E. coli with different inoculum sizes eventually generated different swimming phenotype distributions. Interestingly, incubation with antimicrobials promoted bacterial chemotaxis in specific cases, despite growth inhibition. Moreover, E. coli filamentation in the presence of antibiotics was assessed, and the impact on motility was evaluated. We propose that the observation of traveling bands can be explored as an alternative for fast antimicrobial susceptibility testing.


Biosemiotics ◽  
2021 ◽  
Author(s):  
Adam Kłóś ◽  
Przemysław Mieszko Płonka

AbstractBacterial chemotaxis is often considered to be a textbook example of the rudimentary semiotic process. As such, it gives an excellent opportunity to better understand both semiosis and biology. Our study reviews this phenomenon in the light of up-to-date scientific knowledge to answer the most basic semiotic questions: what is the sign? What types of signs are there? What is the meaning understood on the molecular level, and by what means can it grow with time? As a case study, the bacterial chemotaxis toward glucose in E. coli species is chosen, and the semiotic framework of Charles Sanders Peirce applied. The analyses provide us with the following results: the sign, in its ultimate nature, is a general process. Bacterial chemotaxis can be understood in terms of Peircean type, symbol, and argument. The meaning on the molecular level is entirely pragmatic and, in this case, reduced to a bacterial response to glucose. A sign can grow through sign generalization, the emergence of different sign categories, the integration of these categories in functional cycles, and the introduction of contextuality. The sign of bacterial chemotaxis extends from the cell signaling pathways up to the population level. The presented results advance our knowledge of sign processing in the context of semiotic evolution.


2021 ◽  
Author(s):  
Girija A. Bodhankar ◽  
Payman Tohidifar ◽  
Zachary L. Foust ◽  
George W. Ordal ◽  
Christopher V. Rao

ABSTRACTBacillus subtilis employs ten chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis. Phenol is an attractant at low, micromolar concentrations, and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to the govern the attractant response to phenol and related compounds. Using receptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation-transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors.IMPORTANCEBacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis. We show that phenol is sensed both as an attractant and a repellent. While mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.


2021 ◽  
Vol 15 (1) ◽  
pp. 367-376
Author(s):  
Julián F. Beltran ◽  
SM Viafara-Garcia ◽  
Alberto P. Labrador ◽  
Johan Basterrechea

Chronic periodontal disease and oral bacteria dysbiosis can lead to the accumulation of genetic mutations that eventually stimulate Oral Squamous Cell Cancer (OSCC). The annual incidence of OSCC is increasing significantly, and almost half of the cases are diagnosed in an advanced stage. Worldwide there are more than 380,000 new cases diagnosed every year, and a topic of extensive research in the last few years is the alteration of oral bacteria, their compositional changes and microbiome. This review aims to establish the relationship between bacterial dysbiosis and OSCC. Several bacteria implicated in periodontal disease, including Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and some Streptococcus species, promote angiogenesis, cell proliferation, and alteration in the host defense process; these same bacteria have been present in different stages of OSCC. Our review showed that genes involved in bacterial chemotaxis, the lipopolysaccharide (LPS) of the cell wall membrane of gram negatives bacteria, were significantly increased in patients with OSCC. Additionally, some bacterial diversity, particularly with Firmicutes, and Actinobacteria species, has been identified in pre-cancerous stage samples. This review suggests the importance of an early diagnosis and more comprehensive periodontal therapy for patients by the dental care professional.


2021 ◽  
Author(s):  
Zachary Maschmann ◽  
Siddarth Chandrasekaran ◽  
Brian R Crane

In bacterial chemotaxis chemoreceptors regulate the cytosolic dimeric histidine kinase CheA. To test the role that interdomain linkers play in CheA regulation the linkers that connect the P4 kinase domain to the P3 dimerization domain (L3) and the P5 regulatory domain (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allow for a well-folded kinase domain that retains WT-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registers ~50-fold lower compared to wild-type. Formation of the CheA-LV1 / CheA WT heterodimer fails to rescue CheA-LV1 autophosphorylation and instead reduces the activity of the WT subunit. Neither CheA WT nor CheA-LV1 can phosphorylate P1 in a CheA dimer that contains a single P4 domain. Rescue of autophosphorylation activity in variants with a poly-alanine L3 or an L3 that maintains a heptad repeat suggest that positioning and conformational transitions of P4 depend on L3 assuming helical structure. Pulse dipolar ESR measurements indicate that the CheA-LV1 P4 domains are in close proximity whereas broader distributions in other variants correlate with increased activity. CheA-LV1 has a substantially larger hydrodynamic radius than does CheA WT by SAXS, despite the P4 domains assuming a closed, inhibited conformation. These results explain negative cooperativity in CheA nucleotide binding, demonstrate coupling between P4 disposition and P1 / P2 dynamics and underscore the importance of P4-P4 interactions and an L3 a- helix in CheA activity and regulation.


Sign in / Sign up

Export Citation Format

Share Document