scholarly journals Detection of Inner Structural Changes of Artificial Lipid Membranes by Optical Method

1993 ◽  
Vol 113 (5) ◽  
pp. 364-365
Author(s):  
Kenji Misawa ◽  
Junji Arisawa
Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 430 ◽  
Author(s):  
Anja Sadžak ◽  
Janez Mravljak ◽  
Nadica Maltar-Strmečki ◽  
Zoran Arsov ◽  
Goran Baranović ◽  
...  

The structural integrity, elasticity, and fluidity of lipid membranes are critical for cellular activities such as communication between cells, exocytosis, and endocytosis. Unsaturated lipids, the main components of biological membranes, are particularly susceptible to the oxidative attack of reactive oxygen species. The peroxidation of unsaturated lipids, in our case 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), induces the structural reorganization of the membrane. We have employed a multi-technique approach to analyze typical properties of lipid bilayers, i.e., roughness, thickness, elasticity, and fluidity. We compared the alteration of the membrane properties upon initiated lipid peroxidation and examined the ability of flavonols, namely quercetin (QUE), myricetin (MCE), and myricitrin (MCI) at different molar fractions, to inhibit this change. Using Mass Spectrometry (MS) and Fourier Transform Infrared Spectroscopy (FTIR), we identified various carbonyl products and examined the extent of the reaction. From Atomic Force Microscopy (AFM), Force Spectroscopy (FS), Small Angle X-Ray Scattering (SAXS), and Electron Paramagnetic Resonance (EPR) experiments, we concluded that the membranes with inserted flavonols exhibit resistance against the structural changes induced by the oxidative attack, which is a finding with multiple biological implications. Our approach reveals the interplay between the flavonol molecular structure and the crucial membrane properties under oxidative attack and provides insight into the pathophysiology of cellular oxidative injury.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Calum Gabbutt ◽  
Wuyi Shen ◽  
Jacob Seifert ◽  
Sonia Contera

AbstractCell lipid membranes are the primary site of irreversible injury during freezing/thawing and cryopreservation of cells, but the underlying causes remain unknown. Here, we probe the effect of cooling from 20 °C to 0 °C on the structure and mechanical properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers using atomic force microscopy (AFM) imaging and AFM-based nanoindentation in a liquid environment. The Young’s modulus of elasticity (E) at each temperature for DPPC was obtained at different ionic strengths. Both at 20 mM and 150 mM NaCl, E of DPPC bilayers increases exponentially –as expected–as the temperature is lowered between 20 °C and 5 °C, but at 0 °C E drops from the values measured at 5 °C. Our results support the hypothesis that mechanical weakening of the bilayer at 0 °C  is produced by  structural changes at the lipid-fluid interface.


2017 ◽  
Vol 73 (a2) ◽  
pp. C864-C864
Author(s):  
Nicholas Jan Brooks ◽  
Nicola McCarthy ◽  
Arwen Tyler ◽  
Hanna Barriga ◽  
Sowmya Purushothaman

2013 ◽  
Vol 104 (2) ◽  
pp. 595a-596a
Author(s):  
Luis A. Palacio ◽  
Christopher B. Stanley ◽  
Andrew K. Fraser ◽  
Merrell A. Johnson ◽  
Horia I. Petrache

2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Xinyu Liao ◽  
Prashant K. Purohit

Irradiation-induced oxidation of lipid membranes is implicated in diseases and has been harnessed in medical treatments. Irradiation induces the formation of oxidative free radicals, which attack double bonds in the hydrocarbon chains of lipids. Studies of the kinetics of this reaction suggest that the result of the first stage of oxidation is a structural change in the lipid that causes an increase in the area per molecule in a vesicle. Since area changes are directly connected to membrane tension, irradiation-induced oxidation affects the mechanical behavior of a vesicle. Here, we analyze shape changes of axisymmetric vesicles that are under simultaneous influence of adhesion, micropipette aspiration, and irradiation. We study both the equilibrium and kinetics of shape changes and compare our results with experiments. The tension–area relation of a membrane, which is derived by accounting for thermal fluctuations, and the time variation of the mechanical properties due to oxidation play important roles in our analysis. Our model is an example of the coupling of mechanics and chemistry, which is ubiquitous in biology.


2021 ◽  
Author(s):  
Antoine Reynaud ◽  
Maud Magdeleine ◽  
Amanda Patel ◽  
Anne Sophie Gay ◽  
Delphine Debayle ◽  
...  

AbstractTumor Protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54 and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical transport vesicles (e.g. COPI and COPII). Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by several amphipathic helices, which could fold upon binding to lipid membranes. One of these helices has the physicochemical features of an Amphipathic Lipid Packing Sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Limited proteolysis, CD spectroscopy, tryptophan fluorescence and cysteine mutagenesis coupled to covalent binding of a membrane sensitive probe show that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. TPD54 binding to artificial liposomes is very sensitive to liposome size and to lipid unsaturation but is poorly dependent on lipid charge. Cellular investigations confirmed the key role of the ALPS motif in vesicle targeting. Surprisingly, the vesicles selected by TPD54 poorly overlap with those captured by the golgin GMAP-210, a long vesicle tether at the Golgi apparatus, which displays a dimeric coiled-coil architecture and an N-terminal ALPS motif. We propose that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and -independent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document